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Abstract

Solid-solution strengthening results from solutes impeding the glide of dislocations. Existing theories of strength rely on solute/dis-
location interactions, but do not consider dislocation core structures, which need an accurate treatment of chemical bonding. Here, we
focus on strengthening of Mg, the lightest of all structural metals and a promising replacement for heavier steel and aluminum alloys.
Elasticity theory, which is commonly used to predict the requisite solute/dislocation interaction energetics, is replaced with quantum-
mechanical first-principles calculations to construct a predictive mesoscale model for solute strengthening of Mg. Results for 29 different
solutes are displayed in a “strengthening design map” as a function of solute misfits that quantify volumetric strain and slip effects. Our
strengthening model is validated with available experimental data for several solutes, including Al and Zn, the two most common solutes
in Mg. These new results highlight the ability of quantum-mechanical first-principles calculations to predict complex material properties
such as strength.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Inherent limitations of strength and formability, which
are related to microscopic-scale deformation mechanisms,
are significant obstacles to the widespread adoption of
wrought magnesium in transportation industries. Magne-
sium’s poor workability at room temperature comes from
the anisotropic response of its hexagonal closed-packed
(hcp) crystal structure, and the strength of conventional
Mg alloys is lower than that of most aluminum alloys with-
out added processing steps (e.g. grain refinement). While
the polycrystalline ductility of face- and body-centered
cubic metals results from multiple symmetry-related slip
systems, the basal and prismatic planes in Mg are perpen-
dicular in its hcp lattice, unrelated by symmetry, and must
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both be active to achieve appreciable ductility. The room
temperature stress required to plastically deform Mg along
its (easy) basal slip plane is two orders of magnitude lower
that the (hard) prismatic plane. The five independent slip
systems required by the von Mises criterion [1] for sufficient
ductility are simultaneously activated only at temperatures
near 300 �C. Insights required to overcome these design
challenges can come from new predictive capabilities. To
this end, we have developed a new accurate first-principles
strengthening model that predicts Mg basal strengthening
as a function of substitutional solute chemistry via compu-
tation of the fundamental solute/dislocation interaction.

We compute the interaction energy of solutes with screw
and edge basal dislocations—finding surprisingly similar
magnitude interactions of solutes with both dislocations
types—and use this information to build a first-principles
“design map” for the strengthening of solutes in Mg in a
computationally efficient manner. Using chemically accu-
rate predictions of the atomic-scale geometry, we resolve
rights reserved.
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Fig. 1. First-principles phonon spectra (top) and (0001) generalized
stacking-fault energy (bottom) for Mg. These describe the response of the
lattice to small displacements, elastic deformation and slip in the basal
plane. Density-functional theory is able to accurately reproduce the
vibrational spectra from experimental measurements: neutron scattering
data from [16], and a Born–von Karman fit to the data from [17]. The
equilibrium lattice constants from the ultrasoft pseudopotential are
a = 3.19 Å and c = 5.18 Å; the elastic constants, which determine the
slopes of the spectra for long wavelengths, are C11 = 60 GPa,
C33 = 61 GPa, C12 = 21 GPa, C13 = 20 GPa, and C44 = 18 GPa. For the
generalized-stacking fault surface, a single plane of Mg is displaced in the
basal plane by a linear combination of a

3
½11�20� and a½1�100�; the defected

geometry is allowed to relax in the [0001] directions, and the energy per
area for the defect is the generalized-stacking fault energy. The highlighted
point of a

3
½10�10� is a metastable configuration known as the intrinsic I2

stacking fault. The cI2 energy agrees well with other density-functional
theory calculations of the same [18]. The I2 stacking fault geometry is the
basis for computing chemical misfits for solutes.
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the volumetric expansion and compression and the local
slip in both the far-field and into the dislocation cores,
and determine the solute/dislocation interaction energy
for all substitution sites. This combines accurate dislocation
core geometries at the atomic scale—available from state-
of-the-art first-principles calculations [2–6] with flexible
boundary condition methods [7,8], proven successful for
Mo [9] and Al [10]—and computation of solute “misfits.”
The misfit of a solute quantifies the relative changes in the
lattice from dilute substitution of a solute, and consists of
two important components: a “size” misfit for the change
in the local volume, and a “chemical” misfit for the change
in energy to slip the crystal in the basal plane. The misfits
provide the basis for approximating the solute/dislocation
interaction energy; we test this approximation against direct
substitution of Al in Mg dislocations before applying it for
other solutes. The solute/screw dislocation interaction
energy, normally assumed to be negligible in the far-field
from elasticity treatments [11,12] but which has recently
been quantified with atomic-scale studies [9,13], is found
to be nearly identical in magnitude to the edge dislocation
interaction energy due to the screw core geometry and con-
tributes to the prediction of strength. Finally, we use our
geometrically informed calculation of solute/dislocation
interactions to predict the dilute-concentration strengthen-
ing effect of 29 different solutes and create a simple map
of strengthening potencies that suggests new Mg alloy
designs. Our entirely first-principles approach is validated
with available experimental strengthening data.

2. Computational methods

Efficient computation of interactions between solutes and
dislocations requires simulation cells and flexible boundary
condition approaches that isolate individual defects. Calcu-
lations are performed with VASP [2,3], a plane-wave den-
sity-functional theory code. Magnesium and all solutes are
treated with Vanderbilt ultrasoft pseudopotentials [5,6],
and the Perdew–Wang 91 GGA exchange-correlation
potential [4]. The ultrasoft Mg pseudopotential ([Ne]3s2)
accurately reproduces experimental lattice [14] (less than
0.9% error) and elastic [15] (less than 5% error) constants,
and phonon frequencies [16,17] (less than 3% error) of bulk
Mg; cf. Fig. 1. The stacking-fault surface in Fig. 1, while not
available experimentally, compares well with other density-
functional theory calculations[18]. We chose a planewave
cutoff of 138 eV, k-point meshes (see below for specific val-
ues tied to each geometry) and Methfessel–Paxton smearing
of 0.5 eV to give an energy accuracy of 5 meV for bulk Mg.
For calculations involving solutes, the cutoff energy was
increased as necessary to accommodate harder pseudopo-
tentials for solutes; cf. Table 2 for all cutoff energies used
for the corresponding pseudopotentials (in general, we
selected a cutoff energy of 1.3 times the suggested cutoff
for the potential). The geometries for misfits, and disloca-
tion calculations and coupling with lattice Green function
flexible boundary condition methods are given below.
2.1. Size misfit

For the size misfit, we substituted single solutes into a
2 � 2 � 2 Mg supercell (k-point mesh of 16 � 16 � 10) at
five different volumes based on the equilibrium Mg volume
V0: 1.16V0, 1.05V0, 1.00V0, 0.95V0, 0.86V0. The atomic
positions in each supercell were relaxed until all forces were
less than 5 meV/Å. The size misfit is the logarithmic deriv-



Fig. 2. Full Mg basal screw (top) and edge (bottom) dislocation core
equilibrium geometries, separated into regions I (blue), II (red) and III
(gray), and identified solute sites (green). The periodic simulation boxes
are 69.14 � 54.42 � 3.19 Å3 for screw and 84.92 � 72.57 � 5.53 Å3 for
edge. The initial screw geometry has displacements coming out of the
page, while the edge displacements are in the plane of the page; relaxation
produces additional displacements in the core of the partial dislocations.
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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ative of the Burgers vector b ¼ a
3
½2�110� with solute concen-

tration cs in the dilute limit. Hence:

eb ¼
d ln b
dcs

����
cs¼0

¼ 1

b
db
dcs

����
cs¼0

: ð1Þ

The change in energy for a solute with volume is given by
the differences in supercell energies Esolute supercell(eV) �
Esolute supercell(0) � 15Ebulk Mg(eV) + 15Ebulk Mg(0), and
varies with the volumetric strain eV = V/V0 � 1 for each
supercell. The raw data is fit to a quadratic in strain
E0soluteeV þ E00solutee

2
V , and the slope E0 is used to determine

the size misfit:

eb ¼ �
E0

3BV 0

; ð2Þ

where B is the bulk modulus. We use the slope E0solute to
compute the change in binding energy for a solute due to
local volumetric strain. Comparison with calculations
using a larger 3 � 3 � 3 supercell affected the size misfit
by [10%.

2.2. Chemical misfit

For the chemical misfit, we substituted single solutes
into a 2 � 2 � 9 Mg supercell (k-point mesh of
16 � 16 � 1) corresponding to 18 (0002) planes. The
supercell vector along the c[0001] direction has an extra
a
3
½01�10� component, so that the supercell represents a peri-

odic repetition of stable stacking faults separated by a dis-
tance of 9c. The solute is substituted into a site in the
stacking fault, and the atomic positions were relaxed until
forces were less than 5 meV/Å. Because the I2 intrinsic
stacking-fault configuration is (meta)stable (cf. Fig. 1),
we do not impose any constraints on the relaxation. The
chemical misfit is the logarithmic derivative of the I2 intrin-
sic stacking-fault energy cI2 with solute concentration cs in
the dilute limit. Hence:

eSFE ¼
d ln cI2

dcs

����
cs¼0

¼ 1

cI2

dcI2

dcs

����
cs¼0

: ð3Þ

The chemical misfit is calculated from our supercell ener-
gies as:

eSFE ¼
EdisplacedðsoluteÞ � EundisplacedðsoluteÞ � 2

ffiffiffi
3
p

a2cI2

cI2

ffiffiffi
3
p

a2=2
;

ð4Þ

where the “displaced” and “undisplaced” geometries corre-
spond to the layered structure with and without an I2
intrinsic stacking fault, and

ffiffiffi
3
p

a2=2 is the basal plane area.

2.3. Dislocation geometries

Flexible boundary condition methods [19,7,8] relax the
pure Mg basal dislocation geometries. The starting geome-
try comes from the anisotropic elasticity solution for a dis-
location using the elastic and lattice constants from our
first-principles calculations [20,21]. The elasticity solution
determines the displacement field as a continuum function;
we start with a bulk hcp lattice periodically repeated along
the dislocation line direction: a

3
½2�1�10� for the screw (k-

point mesh of 1 � 1 � 16) and a½0 1�10� for the edge (k-
point mesh of 1 � 1 � 12). The displacement field is cen-
tered between two (0002) atomic planes, and applied to
every atom. A finite sized computational cell is produced
by simulating only atoms within 10 lattice planes from
the estimated positions of the partial cores (cf. Fig. 2).
The distance from the core is determined by summing the
distance to return to small relative displacements (the size
of region I), the distance for the lattice Green function to
match the elastic Green function [8] (the size of region
II), and the distance from an unrelaxed free surface to pro-
duce zero forces (the size of region III). Together, this
ensures that region II does not have spurious forces due
to the vacuum outside and is sufficiently separated from
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the defect core to follow the bulk harmonic response. In the
case of the screw dislocation, the lack of a long-range vol-
umetric strain field allows the use of a periodic simulation
cell with “domain boundaries” at the cell boundaries. For
the edge dislocation, vacuum is needed to isolate periodic
images of the dislocations.

2.4. Flexible boundary conditions

Lattice Green function-based flexible boundary condi-
tions isolate the dislocation at the center of the simulation
cell from the domain boundaries or vacuum while displac-
ing surrounding atoms as if the dislocation were embedded
in infinite bulk responding harmonically [19,7]. The
method relaxes each atom based on its location within
one of three different regions determined by the distance
from the dislocation core. Overall, the screw dislocation
consists of 525 atoms and the edge dislocation consists
806 atoms. Region I atoms near the core (54 for the screw,
130 for the edge) start the simulation with non-zero forces,
and are relaxed using a conjugate-gradient method. As the
relaxation commences, the neighboring atoms in region II
(164 for the screw, 247 for the edge) start with zero forces
but the forces increase as atoms in region I are displaced.
The region II atoms can be treated as if they were coupled
to infinite harmonic bulk; hence, their forces can be relaxed

by applying a displacement to each atom R
!

given by the lat-

tice Green function (LGF): ~uðR
!
Þ ¼

P
R
!
0GðR

!
�R
!
0Þ~f ðR

!
0Þ,

where R
!
0 only varies over atoms in region II, ~f are their

forces, and GðR
!
�R
!
0Þ is the (tensor) LGF. This displaces

all atoms—including region I atoms, and the outer region
III atoms (307 for the screw, and 429 for the edge). The
atoms in the outer region have non-zero forces due to the
domain boundary or vacuum; but the lattice Green func-
tion displaces them as if they were part of an infinite bulk
lattice. The relaxation cycle continues between region I
(conjugate gradient) and II (lattice Green function) until
the forces are less than 5 meV/Å in both regions. The final
result of the relaxation is the stress-free dislocation core
equilibrium geometry.

2.5. Direct solute/dislocation interaction energy calculation

We compute the interaction of Al with Mg dislocations
by direct substitution of Al for Mg at different sites in the
dislocation cores (cf. Fig. 2). For each substitution, the
entire region I was relaxed until the forces were less than
5 meV/Å. This defines the relative energies for Al in each
site (18 for the screw, 30 for the edge); to define the energy
zero for Al—the reference of Al substituted into bulk Mg
with no strain field—we reference the average energy of
Al above and below the stacking fault region. The periodic
repetition of the solute along the dislocation line introduces
a finite-size error in the calculated solute/dislocation inter-
action. For the screw dislocation geometry, there is one Al
atom every 3.19 Å along the dislocation line, and for the
edge dislocation, every 5.53 Å. Using a screw dislocation
geometry with double the periodicity (6.38 Å), the calcu-
lated Al solute/screw-dislocation interaction energy was
8.4 meV higher than that extracted from the original geom-
etry. We expect this to be an upper limit on the finite-size
error as it is (i) for the shortest Al–Al repeat distance,
and (ii) for the largest change in local geometry.

2.6. Misfit approximation of solute/dislocation interaction

energy

To compute the interaction of any solute with the Mg
dislocations, we analyzed each dislocation geometry in
terms of local volumetric strain and slip. The local volu-
metric strain at each atomic site in the final relaxed disloca-
tion geometry is defined from the nearest-neighbor
positions as

eV ¼
det

P
~x0x
0
ix
0
j

n o
det

P
~xxixj

� �
2
4

3
5

1=2

� 1 ð5Þ

where~x0 are the vectors to nearest neighbors for a site, and
~x are the corresponding nearest-neighbor vectors in the hcp
lattice [22]. The slip interaction energy (Eslip) is calculated
at each atomic site as:

Eslip ¼
ffiffiffi
3
p

a2=2

6

X
~d

cð0 0 0 1Þð~dÞ; ð6Þ

where~d are the vectors to the nearest neighbors in adjacent
basal planes, c(0 0 0 1) is the generalized basal stacking-fault
energy for displacement ~d, and the factor of 1

6
is from

assigning half the bond energy for the three out-of-plane
neighbors. The interaction energy for a solute is then a
sum of two contributions: the size interaction (given by
the change in solute energy at the site strain) and slip inter-
action (given by the chemical misfit multiplied by the slip
energy of the site)

Ebinding ¼ E0soluteeV þ Eslip � eSFE

¼ �3BV 0 � eV � eb þ Eslip � eSFE: ð7Þ

This misfit approximation requires significantly less com-
puting resources to determine compared with direct
calculations.

3. Dislocation/solute interactions

Figs. 3 and 4 show the first-principles equilibrium basal
screw and edge dislocation core geometries analyzed in
terms of size and slip at each atomic site. The screw dislo-
cation has displacements (slip) parallel to the line direction
(out of the page), and the edge dislocation has slip perpen-
dicular to the line direction, representing the two limiting
cases for basal dislocation geometry. The equilibrium screw
dislocation geometry dissociates into a

3
½10�10� and a

3
½01�10�

partial dislocations separated by 3.9a of I2 stacking fault,
where a is the basal lattice spacing. The equilibrium edge



Fig. 3. Mg basal screw dislocation core geometry with atomically resolved
slip energy (top) and volumetric strain (bottom). The equilibrium
geometry is found using first-principles flexible boundary condition
methods. The circles show positions of atomic rows repeated out of the
page (the ½2�1�10� direction), while the magnitude of arrows between
neighboring sites represent the relative displacement of the neighboring
rows out of the page. The arrow magnitude is maximum for the partial
slip. The dislocation splits into two partials—whose cores are centered on
a closed circuit of arrows—with screw components (displacements out of
the page) of 0.5a, and edge components (displacements in the horizontal
slip plane) of 0.289a, separated by 3.9a. The slip energy is computed from
the atomic geometry based on the relative displacements of neighbors, and
has a maximum value of 20 meV at the green sites. The volumetric strain is
computed from the average change in nearest neighbor distances, and has
a maximum tensile value of +4.6% at the cyan sites and maximum
compressive value of �2.7% at the magenta sites.

Fig. 4. Mg basal edge dislocation core geometry with atomically resolved
slip energy (top) and volumetric strain (bottom). The equilibrium
geometry is found using first-principles flexible boundary condition
methods. The circles show positions of atomic rows repeated out of the
page (the ½01�10� direction), while the magnitude of arrows between
neighboring sites represent the relative displacement of the neighboring
rows along the horizontal slip plane. The arrow magnitude is maximum
for the partial slip. The dislocation splits into two partials—whose cores
are centered on a closed circuit of arrows—with edge components
(displacements in the horizontal slip plane) of 0.5a, and screw components
(displacements out of the page) of 0.289a, separated by 6.7a. The slip
energy is computed from the atomic geometry based on the relative
displacements of neighbors, and has a maximum value of 25 meV at the
green sites. The volumetric strain is computed from the average change in
nearest neighbor distances, and has a maximum tensile value of +5.3% at
the cyan sites and maximum compressive value of �4.9% at the magenta
sites.
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dislocation also dissociates into partial dislocations (half
the slip of the full dislocation), separated by 6.7a of stack-
ing fault. The “cores” of the partials have the largest
change in local geometry from bond-stretching and bond-
bending. For a screw dislocation, there is no far-field dila-
tion (tension or compression); however, we find a large vol-
umetric strain in the partial cores. The strain is comparable
to that in the edge dislocation core, which does have a far-
field dilation strain. We quantify the bond-bending with
the relative displacement ~d of each atomic row, and aver-
age the energy of stacking faults with displacement ~d of
the six neighbors to give a slip energy Eslip. This energy is
localized to the partial cores and the stacking fault separat-
ing them. A solute’s binding energy will change in the dis-
locations due to the different local geometry; moreover, as
the cores show the greatest change in local environment, we
expect solutes to provide the strongest interactions from
sites within the dislocation cores.

Fig. 5 shows the first-principles interaction energy—the
change in the solute binding energy—for an Al solute with
screw and edge dislocation cores. We find the strongest
interaction at the site of maximum compression near the
center of the dislocation partial cores for both the edge
and the screw geometries. This is expected as Al is smaller
than Mg and is affected by the size changes in the core. The
interaction force (the derivative of the interaction energy in
the slip direction) is largest between the partial cores and
the stacking fault for both dislocations, with nearly equal
magnitudes for edge and screw. The similar values for the
screw and edge forces are surprising as elasticity theory
predicts a very weak far-field interaction for the screw dis-
location [12]. If we apply anisotropic elasticity theory at a
distance of c/4 from the slip plane (where c/2 is the distance
between parallel basal slip planes) to the screw and edge
dislocations separated into mixed partials (a

3
½1�100� and

a
3
½10�10�), anisotropic elasticity theory predicts maximum/

minimum volumetric strains in the partial cores of ±7.2%
(screw) and ±12.7% (edge). This is significantly different
from our atomic-scale values of �2.7%, + 4.6% (screw)
and �4.9%, + 5.3% (edge). Moreover, elasticity theory pre-
dicts the maximum interaction forces for solutes to be the
maximum interaction energy divided by 2 Å, and that the
solute/screw interaction force will be 58% of the solute/
edge interaction force. All of the elasticity predictions con-
tradict our atomic-scale calculations: equal solute/screw
and solute/edge interaction forces, energy to force ratios



Fig. 5. Al interaction energies with Mg screw (top) and edge (bottom)
dislocations, from first principles. We substitute Al atoms at different sites
in and around the partial cores, and compute the energy differences after
relaxation. The cyan sites show points of maximum binding energy while
the magenta sites show maximum interaction force—i.e. greatest change in
binding energy along the slip plane (cf. Table 1 for numerical values). The
sites between the partial cores and stacking faults have the largest
interaction force for both dislocation types. The strong Al interaction with
the screw dislocation is surprising, and can only be accurately resolved
through the atomic-scale calculation of the full dislocation core geometry.

Table 1
Al interaction energy with Mg basal screw and edge dislocations from
direct solute substitution calculations (cf. Fig. 5) and misfit approxima-
tions based on the dislocation geometry. The maximum binding energy
(meV) and maximum interaction force (meV/Å) determine the attraction
of solutes to dislocations and solid-solution strengthening. The misfit
approximation uses two misfits with the atomic-scale dislocation geom-
etry: change in local volume, and bond-bending from slip to compute
interaction energies for solute with the dislocation core. For both
dislocation geometries, the misfit approximation correctly captures the
interaction energies and forces compared with the more computationally
intensive direct calculation.

Ebinding (meV) Fmax (meV/Å)

Screw

Direct (Fig. 5) 60 11.4
Misfit: volume 46 12.6
Misfit: volume + slip 65 11.2

Edge

Direct (Fig. 5) 99 12.2
Misfit: volume 81 11.6
Misfit: volume + slip 105 11.5
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of 6–8 Å, and smaller and unbalanced maximum and min-
imum volumetric strains. All of these differences highlight
the sensitivity of the solute/dislocation interaction to the
partial core geometries and the need for a first-principles
approach to compute stress-free atomic-scale dislocation
core geometries.

We replace the elasticity approach to solute/dislocation
interaction with a fully atomic-scale approach based on
size and chemical misfits. The long-range strain and stress
fields of a dislocation are known from anisotropic elasticity
[21], and so the change in local volume around a solute
(size misfit eb, the logarithmic derivative of the lattice con-
stant with solute concentration) controls the solute/disloca-
tion interaction. In the dislocation core, the interaction
energy is largest, but it is no longer described by elasticity.
Despite this, we can use the size misfit even in the partial
cores by computing the change in local volume for each
atomic site. This approximation is the largest contribution
to the interaction energy; the next largest contribution is
from the slip in the partial cores and the stacking fault.
In the same way that we determine a slip energy in the core
of the dislocation, we find that solutes change the response
of the crystal to slip (chemical misfit eSFE, the logarithmic
derivative of the stacking-fault energy with solute concen-
tration). The chemical misfit determines how the atomically
resolved slip energy (cf. Figs. 3 and 4) will change with the
addition of a solute. Adding this contribution to the size
misfit produces an accurate approximation of the solute/
dislocation interaction energy using the dislocation core
geometry.

Table 1 compares the solute/dislocation interaction
for Al computed using direct substitution into the disloca-
tion cores with our combined size- and chemical-misfit
approach. The response of Al to changes in local volume
and slip captures most of the interaction energy and forces
in the dislocation core. Moreover, the strain and slip ener-
gies are taken directly from the equilibrium core geome-
tries, and the size- and chemical-misfit calculations
include the local response of Mg atoms neighboring the
Al solute. The size-misfit approximation is expected to be
accurate in the far-field, and is accurate even in the partial
cores where the interaction is the strongest. The slip energy
is needed to represent the stacking fault region between the
partials, and the center of the partial cores themselves. The
maximum interaction forces from the misfit calculation are
accurate to within 5% of the direct calculations for both
screw and edge geometries, with deviations of only 5 meV
for the interaction energies; hence, we can predict the inter-
action energies of other solutes by using the size- and chem-
ical-misfits combined with the equilibrium dislocation core
geometries. This permits us to use much simpler and com-
putationally efficient first-principles calculations of misfits
with our first-principles calculation of pure Mg dislocation
cores.

Fig. 6 provides the formulae for the maximum solute/
dislocation interaction force in terms of misfits. The inter-
action force from the first-principles solute binding energy
is F max ¼ maxjm̂ � rEbindingj, where m̂ is the dislocation
slip direction (½1�1 00� for screw and ½11�20� for edge), and
Ebinding is the sum of the solute slip and size interaction
energies from Eq. (7). The gradients of the solute size
and slip interactions are calculated as a centered difference
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Fig. 6. Formulae for computation of maximum solute/dislocation inter-
action forces from eb and eSFE for edge (top) and screw (bottom)
dislocations. Each solute substitutional site in the screw or edge
dislocation has a local volumetric strain and slip energy; we use the size
and chemical misfits to approximate the solute/dislocation interaction
energy by linearly scaling those energies. The derivative of the solute/
dislocation interaction energy along the slip direction gives the interaction
force, and the maximum interaction force appears as input in our
strengthening model (Eq. (10)). The particular site that produces the
largest interaction force changes depending on the magnitudes of the
misfits eb and eSFE, leading to different regimes. The slopes of the lines
separating the different regimes are indicated in red. (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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in the slip direction for sites near the partial dislocation
cores where the gradient is the largest. The gradients were
scaled by the size and chemical misfits for each solute and
summed to determine the maximum interaction force. The
end result is that, for any combination of eb and eSFE, the
strongest interaction force site is known, and its pinning
force can be computed as a linear combination of the
two parameters; however, the coefficients change as differ-
ent magnitudes of eb and eSFE will select different sites as
the strongest interaction force site. Fig. 6 graphically sum-
marizes all of the formulae for each range of eb and eSFE.
For example, Al has eb = �0.115 and eSFE = �1.252; for
the edge dislocation, the interaction force is then given by
the formula in the southwest corner j71.3eb + 2.62eS-

FEj = 11.5 meV/Å, and for the screw dislocation, the inter-
action force is given by the formula in the narrow
southwest wedge j102eb � 0.370eSFEj = 11.2 meV/Å. For
Zn, eb = �0.153 and eSFE = +0.317, the edge dislocation
interaction force is given by the formula in the south sec-
tion j101eb � 0.412eSFEj = 15.6 meV/Å and for the screw
dislocation, the interaction force is given by the formula
in the south section j104eb � 0.599eSFEj = 16.1 meV/Å.
4. Solid-solution strengthening model

To predict solid-solution strengthening, we use our first-
principles atomic-scale solute/dislocation interaction calcu-
lation as input to a dilute-concentration, weak-obstacle
model for solid-solution strengthening from Fleischer
[23]. As the dislocation moves in the slip plane under stress,
it encounters randomly placed immobile solute atoms, each
of which provides a “pinning” force up to the maximum
solute/dislocation interaction force Fmax. This point-pin-
ning model is applicable for isolated obstacles with a
short-range—on the scale of the solute-separation dis-
tance—interaction force between solute and dislocations,
and hence will capture the dilute-concentration limit. It
also assumes a random solute distribution that does not
rearrange due to the dislocation strain-fields; hence, it is
operable at temperatures where no appreciable solute diffu-
sion occurs. The nearly straight dislocation bows at the sol-
ute until it reaches a critical bowing angle hc and the line
tension E pulls the dislocation past the solute. At the crit-
ical angle hc; F max ¼ 2E sinððp� hcÞ=2Þ. For weak obsta-
cles, the dislocation is nearly straight, and the critical
bowing angle is only slightly smaller than p, hence
p� hc � F max=E� 1. The mean distance between pinning
points, L, is the average distance between nearest randomly
placed solutes in a circular wedge of angle a = (p � hc)/2,
where L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2qsaÞ

p
, and qs is the density of solutes in

the slip plane. The solute density is 2cs (atomic concentra-
tion cs) per

ffiffiffi
3
p

b2=2 (Burgers vector b = a, basal lattice con-
stant), assuming that the solute can appear either above or
below the slip plane. Hence:

L ¼ p
qsðp� hcÞ

� �1=2

¼ p
ffiffiffi
3
p

b2

4ðp� hcÞcs

 !1=2

¼ ð3p2Þ1=4b
2

E

F max

� �1=2

c�1=2
s : ð8Þ

That is, the distance between pinning points increases with
decreasing solute concentration cs and with decreasing
interaction force. Given the mean solute spacing, the
strengthening (i.e. the increase in critical-resolved shear
stress in the basal plane necessary to overcome the solute
restraining force) is:

DsCRSSð0 0 0 1Þ ¼
F max

bL
¼ 2

ð3p2Þ1=4

E

b2

F max

E

� �3=2 ffiffiffiffi
cs

p
; ð9Þ

which scales as F 3=2
max and

ffiffiffiffi
cs
p

. This is the change for a
(nearly) straight dislocation line of a given character rang-
ing from edge to screw; the interaction energy and line ten-
sion correspond to the particular line orientation. The
strengthening of an average dislocation loop—which con-
tinuously ranges from edge to screw orientations—is
weighted by the line tension. The shape of a basal loop
can be estimated as an ellipse with axial ratio a = Ke/Ks,
where Ke = 25.6 GPa and Ks = 18.6 GPa are the edge and
screw line energy prefactors [20] as determined from the



Fig. 7. Solid-solution strengthening potency (contours) vs. their size (eb)
and chemical (eSFE) misfits for 29 different solutes in Mg. The misfits,
combined with the screw and edge dislocation geometries (cf. Figs. 3 and
4), determine the maximum interaction forces. In the dilute limit for weak
obstacles, the strengthening—characterized by a change in the basal
critical-resolved shear stress DsCRSS(0 0 0 1)—scales with

ffiffiffiffi
cs
p

and with the
interaction forces to the 3/2 power in Eq. (10). We can efficiently predict
the solute strengthening for a whole range of solutes from the first-
principles core geometry. This “design map” shows solutes with compa-
rable strengthening potency, and also gives a guide to solubility—which
decreases with increasing misfit magnitudes.
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first-principles elastic constants Cij. For Mg, this gives a
weight of 0.539 for the screw dislocation and 0.461 for
the edge. The screw and edge line tensions are Es ¼
1
2
Ksb

2 ¼ 591 meV=Å and Ee ¼ 1
2
Keb

2 ¼ 817 meV=Å; the
dislocation loop weighted-average strengthening for each
solute is therefore:

DsCRSSð0 0 0 1Þ ¼ 0:30 F screw
max

� 	3=2 þ 0:22 F edge
max

� 	3=2
h i

� c1=2
s ;

ð10Þ

where DsCRSS(0 0 0 1) is in MPa and the interaction forces are
in meV/Å.

Hence we need to consider the contributions to strength
from both edge and screw dislocations for all solutes in our
modified-Fleischer model. The concentration-independent
prefactor in Eq. (10) is the solute “strengthening potency”.
The solubility of a solute controls the maximum possibleffiffiffiffi

cs
p

, and hence the maximum possible strengthening of a
solute in an alloy. Combining the calculation of interaction
strengths from their misfits, the strength potency can be fit
to an approximate functional form

DsCRSSð0 0 0 1Þ

� ð38:9 MPaÞ eb

0:176


 �2

þ eSFE

5:67


 �2

� ebeSFE

2:98

� 
3=2

� c1=2
s :

ð11Þ

The negative ebeSFE term shows that the effect of the size
and chemical misfits is not completely independent, but
that due to the geometry of the dislocation core—where
the sites of largest slip energy are neighboring sites of larg-
est strain energy—a larger gradient can be produced by
having the size and slip misfits with opposite signs. How-
ever, the magnitude of the denominators also shows that
the size misfit is the dominant interaction. The fit had a
maximum error of 10%, with the average error being 3%.
As this model ignores thermally activated processes to
overcome solute obstacles, it is appropriate at temperatures
without appreciable diffusion, but the fundamental interac-
tion data is usable for high-temperature strengthening
models as well. All of the material information that enters
Eq. (10) comes completely from first principles: crystal
structure, lattice and elastic constants, dislocation core
geometries, and solute misfits.

Fig. 7 combines the first-principles data for size- and
chemical-misfits with the simple solid-solution strengthen-
ing model of Eq. (10) into a “design map” for the strength-
ening potencies of 29 different solutes. The contours show
equal strengthening potency vs. size and chemical misfits.
The size- and chemical-misfits can be easily computed for
any substitutional solute in the periodic table, and then
the screw- and edge-dislocation maximum interaction
forces to predict the change in critical-resolved shear stress
for basal slip from Eq. (10). This map provides a rational
method to select equipotent solutes to replace less “desir-
able” elements based on high mass, cost or other process-
ing concerns. In addition, the misfits also give rough
qualitative information about solubility, as larger misfit
magnitudes lead to lower solubilities. For example, for
Zn with a potency DsCRSSð0 0 0 1Þ=

ffiffiffiffi
cs
p ¼ 32:5 MPa, the corre-

sponding small magnitudes of eb and eSFE suggest a high
solubility. Alternatively, the much larger potencies of Ir
(172 MPa) and K (161 MPa) are due to the larger magni-
tudes of eb and eSFE, giving rise to a much lower solubility.
Yttrium represents a reasonable compromise between
strength and solubility.

Table 2 provides misfits and potencies for all 29 solutes,
as well as comparisons with available experimental data
(for Al, Zn, Bi, Cd, In, Li, Pb, Sn, and Tl). For compari-
son, we look to single crystal, low-temperature measure-
ments of critical-resolved shear stress of Mg in the low
concentration limit. For example, the available experimen-
tal data for potencies of common solutes Al and Zn in Mg
extrapolated to 0 K [24,25] give 21.2 and 31 MPa vs. our
first-principles prediction of 19.5 and 32.5 MPa—validat-
ing our computation and modeling approach. For Bi and
Pb, only plateau stress data is available—this is the
strengthening divided by

ffiffiffiffi
cs
p

at larger concentrations than
considered here. We expect the plateau strengthening coef-
ficient to be a lower limit on our dilute-concentration
potency, and so our data remains consistent with the avail-
able experimental data.

5. Conclusions

The basal-slip strengthening design map for Mg repre-
sents an important development in predicting chemical



Table 2
Substitutional solutes with pseudopotential valence configuration and energy cutoff, size and chemical misfits, corresponding maximum interaction force
with an edge and screw dislocation, and computed interaction forces from Fig. 6 and strengthening potency from Eq. (10), and from single crystal, low-
temperature, dilute-concentration experimental measurements where available. In the case of Bi and Pb, low concentration data is not available; instead
plateau stress (potency at higher concentration) serves as a lower limit on the dilute-concentration potency.

Solute USPP Cutoff (eV) eb (%) eSFE Fmax (meV/Å) Potency (MPa)

Edge Screw Eq. (10) Exper.

Ag [Kr]4d105s1 235 �17.1 1.93 19.6 19.3 44.1
Al [Ne]3s23p1 168 �11.5 �1.25 11.5 11.2 19.6 21.2 [24]
As ([Ar]3d10)4s24p3 188 �14.5 �3.60 19.8 17.1 40.3

Be [He]2s2 327 �25.2 1.33 26.1 27.1 71.1
Bi ([Xe]4f145d10)6s26p3 138 16.2 �4.45 23.3 24.5 60.6 >25.0 [24]
Ca [Ar]4s2 138 28.2 �1.39 29.1 30.3 83.8

Cd [Kr]4d105s2 218 �4.6 �0.06 4.6 4.8 5.3 6.0 [28]
Ga ([Ar]3d10)4s24p1 169 �11.9 �1.09 11.6 11.8 20.7
Ge ([Ar]3d10)4s24p2 181 �13.9 �2.04 15.2 13.4 27.6

Hg ([Xe]4f14)5d106s2 207 �7.3 �0.18 7.3 7.5 10.5
In ([Kr]4d10)5s25p1 138 2.8 �1.58 5.8 6.2 7.6 9.0 [24]
Ir ([Xe]4f14)5d76s1 258 �43.5 4.33 48.8 48.0 173.1

K [Ar]4s1 138 42.5 �3.38 46.2 46.4 162.5
Li [He]2s1 138 �5.8 1.89 8.9 9.4 14.4 11.2 [29]
Mn [Ar]3d64s1 295 �35.6 2.12 37.4 38.5 120.8

Na [Ne]3s1 138 12.6 0.29 12.6 12.9 23.6
Pb ([Xe]4f145d10)6s26p2 138 13.2 �3.00 17.9 18.5 40.1 >14.0 [24]
Pd [Kr]4d95s1 259 �31.8 3.75 36.7 36.2 113.5

Pt ([Xe]4f14)5d96s1 249 �37.7 3.39 41.6 41.3 137.5
Ru [Kr]4d75s1 265 �40.1 3.92 44.9 44.2 153.0
Sb ([Kr]4d10)5s25p3 139 4.6 �4.65 14.5 15.0 29.3

Sc [Ar]3d24s1 195 3.5 �1.20 5.5 5.9 7.0
Si [Ne]3s23p2 196 �19.9 �2.03 19.5 19.6 44.5
Sn ([Kr]4d10)5s25p2 138 3.7 �3.08 10.1 10.5 17.1 24.3[30]

Ti [Ar]3d34s1 236 �14.9 �0.81 14.8 15.1 29.8
Tl ([Xe]4f14)5d106s26p1 231 4.7 �1.61 7.3 7.8 10.8 8.2 [31]
Y [Kr]4d25s1 155 21.2 �1.70 23.1 23.2 57.3

Zn [Ar]4s23d10 272 �15.3 0.32 15.6 16.1 32.7 31 [25]
Zr [Kr]4d35s1 195 �3.8 �1.27 6.0 5.1 6.7
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effects on strengthening in an accurate and efficient man-
ner. In addition to predicting strength, we find a strong sol-
ute interaction with screw dislocations equal to that of edge
dislocations: this demonstrates the need for first-principles
quantum-mechanical calculations with flexible boundary
conditions to reveal defect interactions. Maximizing
strength requires careful consideration of the important
tradeoff between high strengthening capacity (i.e. large sol-
ute misfits) and high solubility (low misfit magnitudes).
Predicting strength above dilute-concentrations, at higher
temperatures and including other mechanisms such as for-
est strengthening [26] will require the fundamental input
from the present solute-strengthening predictions. More-
over, cross-slip in Mg depends on the constriction of basal
screw dislocations, and should be aided by solutes with
positive eSFE to increase the basal stacking-fault energy.
By finding solutes that can improve cross-slip while simul-
taneously strengthening basal slip—as approached here—
the strength anisotropy of Mg alloys can be reduced,
improving ductility. The natural extension of the computa-
tional methodology developed herein is to predict solute
effects on slip in prismatic planes, including increasing
cross-slip for ductility enhancement. In addition, atomi-
cally resolved strengthening predictions hold great promise
for the design of other technologically important hcp met-
als such as Ti and Zr.
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