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A B S T R A C T

The hexagonal close-packed (hcp) -martensite phase in steels nucleates from the -austenite parent phase and
can undergo further transformation to the -martensite phase or exist as a metastable phase depending on
temperature, mechanical loading, and alloy chemistry. The solute-dependent lattice parameters and elastic
stiffness coefficients Cij of hcp Fe influence the mechanical properties of steels containing the -martensite phase,
as well as the martensitic transformations between the phases. We use density functional theory to calculate the
lattice parameters and Cij of single-crystal hcp Fe as functions of solute concentration in the dilute limit for the
substitutional solutes Al, B, Cu, Mn, and Si, and the octahedral interstitial solutes C and N. Our computationally
efficient methodology separates the solute dependence of the Cij into lattice strain and chemical bonding con-
tributions. The computed data can be used to estimate the effect of solutes on polycrystalline elastic moduli and
the strain energy associated with martensitic transformations. The data can also serve as inputs to micro-
structure-based models of multiphase steels containing the -martensite phase.

1. Introduction

Steel alloys find widespread application as structural materials since
they are cost-effective and their mechanical properties can be tuned
through processing and alloying more easily than many other structural
materials [1,2]. The most common phases found in structural steels for
automotive applications include -ferrite (body-centered cubic),

-austenite (face-centered cubic), and -martensite (body-centered
tetragonal). The hexagonal close-packed (hcp) phase of pure Fe (space
group P6 /3 mmc) is non-magnetic and is stable at high pressure, but can
also form from the -austenite phase during a stress-assisted [3–8] or
strain-induced [9] martensitic transformation. The transformed auste-
nite can be stabilized by solute additions [10–12] leading to the hcp
-martensite phase found in some steels, or it can further transform to

the -martensite phase [4–7,13–17] depending on temperature, me-
chanical deformation, and alloy chemistry. The -martensite phase oc-
curs at the intersection of shear bands in some transformation-induced
plasticity (TRIP) steels [8,18–21], can form after plastic deformation in
twinning-induced plasticity (TWIP) steels [20,22] and stainless steels
[7,9,13,16,17,23–27], and is also found in FeMn-based shape memory
alloys [28–38]. Experimental measurements on a variety of steels
[3,13,16,23,24,39–44] show that the -martensite phase can nucleate
at the intersection of two -martensite laths or inside a single

-martensite lath during the martensitic transformation.
Iron alloys with the -martensite phase typically contain Al, C, Co, Cr,
Mn, Ni, and Si solutes [8,19,21,22,27,37].

In addition to governing mechanical properties of multiphase steels
[45,46], the lattice parameters and elastic stiffness coefficients Cij of

-austenite, -martensite, and -martensite influence the martensitic
transformations between these phases [16,17,20,47,48]. The lattice
parameters and Cij determine the strain energy contributions to the free
energy difference between the parent and product phases [4,47,48],
govern the structure and energy of the interfacial regions between
phases [4,16,48], and control the separation between Shockley partial
dislocations that can glide to produce the martensitic transformations
[3–5,15–17,48]. The lattice parameters and Cij of Fe phases depend on
the concentration of solutes in the alloy [49–53], so understanding the
influence of solutes on the structural and elastic properties of hcp Fe is
crucial for modelling the formation, mechanical stability, and sub-
sequent transformation of the -martensite phase. Solute-dependent
lattice parameters and Cij of hcp Fe also serve to increase the accuracy
and predictive capabilities of microstructure-based simulations of the
elastic [54] and plastic [46,55] response of Fe-based shape memory
alloys and multiphase steels containing -martensite.

Most experimental and theoretical studies of solute effects on the
lattice parameters and elasticity of Fe alloys have focused on either
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polycrystalline steels [49], or single crystals with the body-centered
cubic (ferrite) [50,52,56] or body-centered tetragonal ( -martensite)
structure [53,56–58]. While first-principles methods have been used to
compute the structural and elastic properties of pure single-crystal hcp
Fe [59–62] and the effect of Si and C solutes on the elasticity of hcp Fe
[63–65], these previous studies largely focused on behavior at pressures
relevant to the Earth’s core ( 360 GPa), rather than the low pressures
that occur in most structural steel applications where the elastic stiff-
ness is generally much lower [63]. We therefore present a detailed
density functional theory (DFT) study of the effects of Al, B, C, Cu, Mn,
N, and Si solutes commonly found in high-strength steels for auto-
motive applications on the single-crystal lattice parameters and Cij of
hcp Fe at zero pressure. Our computationally efficient approach de-
termines the changes in the Cij due to the separate effects of solute-
induced strain and changes in chemical bonding around the solutes
[52,53]. We also provide estimates of the effect of these solutes on the
polycrystalline elastic moduli of hcp Fe, and discuss how solutes in-
fluence the strain energy associated with the to transformation.

The rest of this paper is organized as follows. Section 2 gives the
details of our DFT calculations and discusses our models for the solute
dependence of the lattice parameters and Cij of hcp Fe in the dilute
limit. Section 3 presents our results for the variation of the lattice
parameters and Cij with solute concentration. Here we also compute the
effect of solutes on the volumetric strain difference between the and
phases in steels, and discuss the implications for the martensitic
transformation between these phases. Section 4 summarizes the results
and provides further discussion. The Appendix gives expressions for the
elastic moduli of polycrystalline hcp Fe and their derivatives with re-
spect to solute concentration in terms of the derivatives of the single-
crystal Cij.

2. Computational methods

We use DFT to compute the lattice parameters and Cij of non-mag-
netic hcp Fe as functions of the concentration of Al, B, C, Cu, Mn, N, and
Si solutes in the dilute limit. We treat Al, Cu, Mn, and Si as substitu-
tional solutes. We compute the formation energies of B, C, and N in
substitutional and six different interstitial sites, and show that B is most
energetically stable as a substitutional solute whereas C and N are most
energetically stable as octahedral interstitial solutes.

2.1. DFT calculation details

All of our DFT calculations are performed using the plane-wave
basis code VASP [66]. We use the PBE generalized gradient approxima-
tion (GGA) functional [67] for the electron exchange-correlation en-
ergy, and projector augmented wave (PAW) potentials [68] generated
by Kresse and Joubert [69] to model the nuclei and core electrons of Fe
and all of the solutes. The PAW potentials for Fe, Al, B, Cu, Mn, Si, C,
and N have the respective electronic configurations [Ar] d s3 47 1,
[Ne] s p3 32 1, [He] s p2 22 1, [Ar] d s3 410 1, [Ar] d s3 46 1, [Ne] s p3 32 2, [He] s p2 22 2,
and [He] s p2 22 3. The calculations require a plane-wave energy cutoff of
550 eV to converge the energies to less than 1 meV/atom. The energy
tolerance for the electronic self-consistency loop is 10−8 eV, and we use
a conjugate gradient method to relax the atoms until all of the atomic
forces are less than 5 meV/Å. The k-point meshes for our × ×4 4 3
supercell calculations are based on a × ×32 32 20 unit cell k-point
mesh. We use order-one Methfessel-Paxton smearing [70] to ensure
accurate forces and stresses for relaxing supercells and calculating the
Cij. For our chosen k-point density, we use a smearing energy width of
0.2 eV to ensure close agreement between the smeared electronic
density of states near the Fermi energy and the electronic density of
states computed using the linear tetrahedron method with Blöchl cor-
rections [71]. We use standard stress-strain calculations to compute the
Cij [52,53,72,73], taking care to fully relax the atomic positions after
applying strain [61,74,75]. We use standard finite difference formulas

to compute derivatives of the Cij with respect to lattice parameters or
solute concentrations [52,53,76].

We model hcp Fe as non-magnetic since we find that the ferro-
magnetic state and several different antiferromagnetic magnetic states
relax to the non-magnetic state at zero pressure. The ground state
magnetic structure of hcp Fe at zero pressure was also found to be non-
magnetic in previous DFT-GGA calculations [60,61]. Experiments show
that the hcp -martensite phase in steels is not magnetizable [2], and
Mössbauer effect studies on Fe-Mn alloys [77,78] suggest that the hcp
phase is paramagnetic but that the magnetic moments on the Fe atoms
are all less than 0.1 µB [78]. Furthermore, ab inito simulations of hcp Fe-
Mn random alloys within the disordered local moment (DLM) approx-
imation for paramagnetism [51] show that the local Fe magnetic mo-
ments are zero at the equilibrium volume. All of the solutes in our study
are also non-magnetic, with the possible exception of Mn. We per-
formed test calculations where we initialized the Mn magnetic moment
to a non-zero value, and we found that after relaxation the moment
goes to approximately zero. The DLM study on hcp Fe-Mn alloys in Ref.
[51] also found that the local magnetic moments on the Mn atoms are
zero at the equilibrium volume. We therefore treated Mn as non-mag-
netic in all subsequent calculations.

2.2. Solute formation energy calculations

We perform formation energy calculations to show that C and N are
most stable as octahedral interstitial solutes, whereas B is most stable as
a substitutional solute. The formation energy of substitutional solutes is
computed as

=E E N s N E N N E s[( 1)Fe, ] ( 1) [ Fe]/ [ ],sub
f

sub (1)

where E N s[( 1)Fe, ]sub is the total energy of a supercell containing
N( 1) Fe atoms and a solute s at a substitutional site, E N[ Fe] is the

total energy of a supercell containing N Fe atoms, and E s[ ] is the energy
of a single solute atom. The formation energy of interstitial solutes is
computed as

=E E N s E N E s[ Fe, ] [ Fe] [ ],int
f

int (2)

where E N s[ Fe, ]int is the total energy of a supercell containing N Fe
atoms and a solute s at an interstitial site. Since we are interested in the
relative stability of the solutes at different sites within the crystal, we
compute the interstitial formation energies Eint

f,rel relative to the sub-
stitutional formation energy for each solute

=E E E .int
f,rel

int
f

sub
f (3)

Table 1 compares Eint
f,rel for interstitial solutes at octahedral, tetrahedral,

hexahedral, face-centered, basal crowdion, and non-basal crowdion
interstitial sites [79,80].

2.3. Effect of solutes on lattice parameters and elastic stiffness coefficients

We compute the solute dependence of the hcp Fe lattice parameters
ak and elastic stiffness coefficients Cij in the dilute limit using a DFT-

Table 1
Formation energies for B, C, and N solutes at six different interstitial sites re-
lative to the substitutional formation energy of each solute. We consider octa-
hedral (oct), tetrahedral (tet), hexahedral (hex), face-centered (fc), basal
crowdion (bc), and non-basal crowdion (nbc) interstitial sites in the hcp lattice.
B is the most stable as a substitutional solute, whereas C and N are the most
stable as interstitial octahedral solutes.

Solute Eoct
f,rel Etet

f,rel Ehex
f,rel Efc

f,rel Ebc
f,rel Enbc

f,rel

B +0.70 eV +2.62 +2.52 +1.88 +1.88 + 1.88
C −2.07 −0.30 −0.44 −0.58 −0.44 0.54
N −3.14 −2.06 −1.95 −1.71 −1.95 1.47
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based methodology that closely follows the approach we developed for
cubic [52] and tetragonal crystal structures [53]. Here we summarize
the approach and refer the reader to Refs. [52,53] for more details. In
this study, =a a1 2 are equal to the hcp lattice parameter conventionally
denoted as a, and a3 is equal to the hcp lattice parameter conventionally
denoted as c (i.e., we are using three-index Bravais notation, rather than
four-index Miller-Bravais notation). In the dilute limit the ak and Cij
depend linearly on solute concentration cs [49,52,53,81–83],

= + + …
=

a c a a
c

c({ }) · ,k s k
s

k

s c
s

0

0s (4)

= + + …C c C
C
c

c({ }) · ,ij s ij
s

ij

s
s

0

tot (5)

where ak
0 and Cij

0 are the lattice parameters and elastic stiffness coeffi-
cients of pure hcp Fe, respectively, and the sums are over solute species.
The total derivative of Cij in Eq. (5) is

= +
C
c

C
c

C
c

,ij

s

ij

s

ij

stot strain chem (6)

where the first term on the right is the solute-induced strain contribu-
tion and the second term is the contribution from changes in chemical
bonding around the solute atom. In the following sections we give ex-
pressions for the derivatives in Eqs. (4) and (6), where we denote the
DFT approximation of a physical quantity X as X .

2.3.1. Derivative of ak with respect to cs
The solute dependence of the lattice parameter ak arises from the

stress the solutes induce in the host crystal and the strain the crystal
undergoes to relieve this stress. We compute the derivative of ak with
respect to cs in the dilute limit from the solute strain misfit tensor ij

s,
which is the derivative of solute-induced strain eij

cs with respect to solute
concentration cs [52,53],

=
=

e
c

.ij
s ij

c

s c 0

s

s (7)

The substitutional and octahedral interstitial solutes considered in this
study do not induce shear strain in hcp Fe, so the off-diagonal elements
of ij

s are zero. The derivative of the lattice parameter ai with respect to
cs is determined from

= + +
=a

a
c

1 ( ),ij
s

i

i

s c
ij i i i0

0
1 2 3

s (8)

where ij is the Kronecker delta.
We compute ij

s from the elastic compliance tensor of the host crystal
Sijkl

0 , and the solute’s elastic dipole tensor Pkl
s [84] which captures the

stress the solute induces in the host crystal. The DFT approximation to
Pkl

s is [53,84]

=P N ,kl
s

kl
s N

0
( , , )0 (9)

where N is the number of lattice sites in the computational supercell, 0
is the volume per atom in the ideal solute-free hcp crystal, and kl

s N( , , )0

is the DFT-computed stress that a single solute induces in the supercell
with fixed ideal hcp lattice vectors after relaxing the atomic positions.
To ensure that only solute-induced stress is included in Eq. (9), any
small residual stress computed for the solute-free supercell should be
subtracted from kl

s N( , , )0 which is computed for the supercell containing
a solute. The DFT approximation to ij

s is then [52,53]

= S P1 ,ij
s

k l
ijkl kl

s

0 ,

0

(10)

or explicitly for substitutional and octahedral interstitial solutes,

= + + +

+

S S P S P

S P S P

1 [( ) ] ( )

1 [2 ] .

ij
s s s

ij i i

s s
ij i

0
1111
0

1122
0

11 1122
0

33 1 2

0
1122
0

11 1111
0

33 3 (11)

For selected solutes we verify the accuracy of Eq. (11) by fully relaxing
the atomic and lattice degrees of freedom of the supercells and directly
computing the diagonal components of the solute strain misfit tensors
as

= N a a a( )/ ,kk
s

k
s

k k
0 0 (12)

where ak
s is a fully relaxed lattice parameter of the supercell containing

a solute. Computing kk
s using Eq. (11) is more computationally efficient,

however, since it requires relaxing only the atomic degree of freedom,
whereas Eq. (12) requires relaxing both the atomic and lattice degrees
of freedom.

2.3.2. Derivatives of the Cij with respect to cs
The solute dependence of the elastic stiffness coefficients Cij arises

from the solute-induced strain that changes the lattice parameters of the
host crystal, and the local changes in chemical bonding around the
solutes [52,53] (see Eq. (6)). For both substitutional and interstitial
solutes, there are strain contributions from changes in the a1 basal lat-
tice parameter and from changes in the a3 lattice parameter (i.e., along
the c-axis). The strain contribution is the sum of the derivatives of the
solute-free hcp Fe Cij

0 with respect to the lattice parameters times the
derivatives of the lattice parameters with respect to solute concentra-
tion,

= +
= = = = =

C
c

C
a

a
c

C
a

a
c

· · ,ij

s k

ij

k a a

k

s c

ij

a a s cstrain 1

2 0

0

0

3

3

0k k s s0 3 3
0 (13)

= +
= = =

C
c

C
a

a
C
a

a· · ,ij

s k

ij

k
a a

k kk
s ij

a a

s

strain 1

2 0
0

0

3
3
0

33

k k
0 3 3

0 (14)

where the DFT approximations for C a/ij k
0 and C a/ij

0
3 in Eq. (14) are

computed using a four-point central finite difference method (see Refs.
[52,53] for details). In practice we do not compute the two separate
derivatives of the Cij

0 in the sum in Eq. (14) (i.e., for =k 1 and 2), but
rather compute the Cij

0 derivatives after applying uniform basal strain to
the lattice. The chemical contribution in Eq. (6) is

= =
=

C
c

C
c

c 0
.ij

s

ij

s
s

chem 0
(15)

We approximate this derivative using a forward finite difference,

=
C
c

N C C[ ( ) ],ij

s
ij
s

ij
chem

0
0

(16)

where C ( )ij
s

0 is an elastic stiffness coefficient of an hcp Fe crystal that
contains solute s but has the lattice parameters of ideal solute-free hcp
Fe. We compute C ( )ij

s
0 by applying strain to supercells that contain a

single solute but have the ideal hcp Fe lattice parameters which isolates
the chemical contribution to the Cij derivative. We verify the accuracy
of Eq. (6) by directly calculating the total derivative of Cij for selected
solutes using a finite difference approximation similar to Eq. (16),

=
C
c

N C C[ ( ) ].ij

s
ij
s

ij
dir

eq
0

(17)

Eq. (17) differs from Eq. (16) since C ( )ij
s

eq is computed by straining
supercells that contain a single solute and have fully relaxed lattice
parameters. Hence, the directly calculated derivatives contain both the
chemical and the strain contributions. The separate calculations of the
strain and chemical contributions are more computationally efficient,
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however, since we compute the Cij
0 derivatives in the strain contribu-

tions in Eq. (14) using two-atom hcp unit cells and the chemical con-
tribution calculations in Eq. (16) require relaxing only atomic degrees
of freedom. Fig. 1 outlines our computational approach for computing
the solute-induced changes in the lattice parameters and Cij in hcp Fe.
The solute-dependent Cij can also be used to compute the solute de-
pendence of the polycrystalline bulk modulus B, shear modulus G, and
Young’s modulus E using the Voigt-Reuss-Hill averaging approach dis-
cussed in the Appendix.

We also examine the effect of solutes on the elastic anisotropy of hcp
Fe under tension. The effective elastic compliance S along the unit
tensile direction u is [85]

= + + +S u S u S u u S S(1 ) (1 )(2 ),3
2 2

11 3
4

33 3
2

3
2

13 44 (18)

where the Sij are single-crystal elastic compliance coefficients written in
contracted Voigt notation. Note that the only component of u that S
depends on is u3 which corresponds to the a3-axis (i.e., the c-axis) of the
hcp crystal. We quantify the anisotropy under tensile loading as the
ratio of the maximum value of S with respect to u3 to the minimum
value of S . This ratio changes with cs through the solute dependence of
the Cij which determine the Sij.

3. Computational results

Here we present the results of our DFT calculations of the lattice
parameters and Cij of ideal hcp Fe and hcp Fe with solutes. We compute
the solute dependence of Voigt-Reuss-Hill (VRH) average polycrystal-
line elastic moduli using the equations given in the Appendix. We also
compute the variation in the volumetric strain difference between hcp
and bct Fe with solute concentration, and discuss how this effects the
to transformation in steels. We compare our results to previous DFT-
GGA calculations and available experimental data.

3.1. Properties of ideal hcp Fe

Table 2 lists our computed ak
0 and Cij

0 for pure Fe that enter into the
solute-dependent lattice parameter model in Eq. (4) and Cij model in Eq.
(5), as well as the derivatives of the Cij

0 with respect to ak
0 that are inputs

for the strain contributions to the solute dependence of the Cij in Eq.
(14). The table also shows that our results generally compare well with
previous GGA calculations [60,61], with the C33

0 and C44
0 values from

Ref. [60] showing the largest deviations from our results. We performed
extensive tests using different k-point densities, energy smearing
widths, plane-wave cutoff energies, and PAW potentials with different
numbers of core electrons, and found deviations of less than 5% from
our values in Table 2. These results combined with the good agreement

Fig. 1. Flowchart for computing the solute dependence of the hcp Fe lattice parameters ak and elastic stiffness coefficients Cij. The arrows show how the outputs from
a given calculation serve as inputs to other calculations. The green boxes show steps requiring DFT calculations, and the tan boxes show steps that only use DFT
results from previous steps to perform calculations.

Table 2
Lattice parameters and elastic properties of pure hcp Fe at =T 0 K and

=P 0 GPa. The second column gives our computed values and the third and
fourth columns give results from previous DFT-GGA calculations. For hcp
crystals, =C C C( )/266

0
11
0

12
0 . The ak

0 and Cij
0 values enter into Eqs. (4) and (5),

and the C a/ij k
0 determine the strain contributions to C c( / )ij s tot given in

Table 3. The anisotropy ratio S S/max min is given by Eq. (18). Expressions for the
Voigt-Reuss-Hill polycrystalline average Young’s modulus EVRH, shear modulus
GVRH, bulk modulus BVRH, and Pugh’s ratio B G/VRH VRH are given in the Ap-
pendix.

GGA, this study GGA [60] GGA [61]

a1
0 2.459 Å 2.46 2.487

a3
0 3.885 3.90 3.917

C11
0 536 GPa 556 531.7

C33
0 596 647 554.6

C12
0 172 171 178.3

C13
0 148 143 143.4

C44
0 170 248 154.2

C66
0 182 193 176.7

C
a
11
0

1
,

C
a
11
0

3

−2146, −234 GPa/Å – –

C
a
33
0

1
,

C
a
33
0

3

−1384, −880 – –

C
a
12
0

1
,

C
a
12
0

3

−1033, −149 – –

C
a
13
0

1
,

C
a
13
0

3

−524, −379 – –

C
a
44
0

1
,

C
a
44
0

3

−293, −199 – –

C
a
66
0

1
,

C
a
66
0

3

−556, −42 – –

S S/max min 1.23 1.21 1.231
EVRH 454 GPa 535 430.8
BVRH 289 297 283.1
GVRH 184 223 172.8

B G/VRH VRH 1.58 1.33 1.638
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between our values and the values from Ref. [61] suggest that the C33
0

and C44
0 values from Ref. [60] may be overpredicted. Our computed Cij

0

values satisfy the Born stability criteria for hcp crystals [86], which
shows that non-magnetic hcp Fe is elastically stable at zero pressure.
The table also lists the anisotropy ratio for single-crystal hcp Fe com-
puted using Eq. (18), and the VRH estimates for the polycrystalline
Young’s modulus EVRH, bulk modulus BVRH, shear modulus GVRH, and
Pugh’s ratio B G/VRH VRH (see the Appendix for more details on the VRH
moduli).

3.2. Effects of solutes on the hcp Fe ak and Cij

Fig. 2 shows the strain misfit tensor components for each solute
computed from solute-induced stress, and verifies that the values agree
with direct calculations for selected solutes. The strain misfit values for

Al, Cu, Mn, Si, C, and N are positive which shows that these solutes are
oversized in the hcp lattice, whereas the negative values for B show that
it is undersized. Al has the largest effect among the substitutional so-
lutes, whereas octahedral interstitial C and N have the largest overall
effect. Mn has a small effect on the lattice parameters of hcp Fe, and
corresponding small strain contributions to the solute derivatives of the
Cij. We compute strain misfit tensors for all of the solutes from the stress
they induce in the lattice (see Eq. (11)), and we also compute strain
misfit tensors directly (see Eq. (12)) for Al, B, and C. The close agree-
ment between the two methods shows that the computationally effi-
cient induced-stress method provides reliable strain misfit values. The
strain misfit tensor components determine the derivatives of the ak in
Table 3, computed using Eqs. (8) and (11). The ab initio DLM study of
hcp Fe-Mn random alloys in Ref. [51] computed the variation of the hcp
lattice parameters ak for Mn concentrations from 15 to 40 at.%, and Ref.
[83] provides experimental measurements of ak for Mn concentrations
from 12 to 29 at.%. The variation of the DLM and experimental data
is approximately linear over these full concentration ranges. We esti-
mate that the slopes of a1 and a3 are +0.45 mÅ/at.% and +0.71 mÅ/
at.% for DLM, and the experimental slopes reported in Ref. [83] are
+ 0.8886 mÅ/at.% and + 1.23 mÅ/at.%. Our computed slopes for a1 and
a3 of + 0.31 mÅ/at.% and + 0.42 mÅ/at.% for Mn (see Table 3) agree
well with the DLM values even though our calculations were performed
at the much smaller Mn concentration of 1.04 at.%. This result suggests
that Mn-Mn interactions are weak in hcp Fe, and that our linear model
for the dependence of the lattice parameters on solute concentrations in
Eq. (4) holds over a large concentration range for Mn. We also note that
our calculations, the DLM calculations, and the experimental mea-
surements show that Mn produces no change in a a/3 1 from dilute con-
centrations (see Table 4) up to a concentration of 40 at.% (see Ref.
[51]). Our computed ak slopes for Mn and the DLM slopes are smaller
than the experimental values, but all three sets of values indicate that
Mn produces a small isotropic expansion of the hcp Fe lattice in contrast
to the other solutes in this study.

Fig. 3 compares the strain (Eq. (14)) and chemical (Eq. (16)) con-
tributions to the solute derivatives of the Cij for hcp Fe, and shows that
the sum of these separate contributions agrees with the more costly
direct calculations (Eq. (17)) that encompass all of these effects. The
close agreement between the two methods indicates that no higher-
order derivatives are needed in Eq. (6) to accurately model the Cij de-
rivatives for dilute solute concentrations in hcp Fe. Mn has a small ef-
fect on all of the Cij compared to the other solutes. We expect that the
derivatives of the Cij with respect to Mn concentration we computed for
the dilute limit should provide a good estimate for the solute depen-
dence at higher Mn concentration for two reasons. First, the strain
contributions depend on the derivatives of the lattice parameters with
respect to solute concentration (see Eq. (13)), and we showed in the last
paragraph that the lattice parameter derivatives we computed for small
Mn concentrations agree well with derivatives computed from DLM
lattice parameter data for Mn concentrations up to 40 at.%. Second, the

Fig. 2. Solute strain misfit tensor components ij
s in hcp Fe. The calculations are

performed using × ×4 4 3 supercells containing either one substitutional or one
interstitial solute, corresponding to a solute concentration of 1.04 at.%. The
dark bars show values computed from the solute-induced stress using Eq. (11).
The light bars show values computed directly using Eq. (12) for Al, B, and C.
The ij

s computed using both methods agree closely for all three of these solutes.
The data in the figure is for atomic concentration. For atomic percent, the va-
lues must be divided by 100.

Table 3
Derivatives of the lattice parameters ak and elastic stiffness coefficients Cij with respect to solute concentration cs. The tabulated Cij derivatives are the total values
that consist of strain and chemical contributions (see Eq. (6)). The ak derivatives determine the solute dependence of the hcp Fe lattice parameters in Eq. (4). The Cij

derivatives determine the solute dependence of the hcp Fe elastic stiffness coefficients in Eq. (5).
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a
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1

0 =

a
cs cs
3

0 ( )C
cs
11

tot ( )C
cs
33

tot ( )C
cs
12

tot ( )C
cs
13

tot ( )C
cs
44

tot ( )C
cs
66

tot

Al +1.75 mÅ
at . %

+7.75 −12.19 GPa
at . %

−8.83 +4.95 −1.80 −5.84 −8.57

B −3.15 −4.18 −11.19 −5.12 +8.95 +2.67 −8.02 −10.07
Cu +1.09 +3.98 −10.69 −7.90 +4.37 −0.42 −6.04 −7.53
Mn +0.31 +0.42 −0.94 −0.31 +0.64 +0.04 +0.29 −0.79
Si +0.26 +4.48 −8.22 −4.33 +5.52 −0.33 −4.75 −6.87
C +5.89 +11.87 −10.94 −13.17 +4.59 +4.43 −5.12 −7.77
N +6.22 +10.74 −11.76 −13.89 +4.92 +5.05 −5.86 −8.34
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close agreement of the lattice parameter derivatives over such a large
concentration range suggests that Mn-Mn interactions are weak and
that the chemical contributions to the Cij derivatives should also be
fairly insensitive over a large range of Mn concentrations. Interstitial C
and N produce the overall largest change in C33. The total derivative
values in Fig. 3 are listed in Table 3, and enter Eq. (5) to give the solute
dependence of the Cij. The derivatives of the single-crystal Cij determine
the derivatives of the anisotropy ratio S S/max min and VRH polycrystal-
line moduli listed in Table 4. None of the solutes has a strong impact on
the elastic anisotropy S S/max min or the Pugh’s ratio B G/VRH VRH of hcp Fe.

Fig. 4 shows the variation of the polycrystalline shear modulus GVRH
and Young’s modulus EVRH with solute concentration. Manganese has a
small effect on EVRH and GVRH, whereas B has the largest effect.

In summary, Eq. (4) gives the hcp Fe lattice parameters ak as
functions of solute concentration and Eq. (5) gives the single-crystal Cij
as functions of solute concentration. The derivatives with respect to
solute concentration that enter these models are given in Table 3. Si-
milar linear models can be used to compute the dilute-limit solute de-
pendence of quantities derived from the single-crystal ak and Cij, in-
cluding a a S S E B G/ , / , , ,3 1 max min VRH VRH VRH, and B G/VRH VRH. The

Table 4
Derivatives of a a/3 1, the anisotropy ratio S S/max min, the Voigt-Reuss-Hill polycrystalline average Young’s modulus EVRH, shear modulus GVRH, bulk modulus BVRH, and
Pugh’s ratio B G/VRH VRH with respect to solute concentration cs. All of these derivatives are computed from the single-crystal derivatives listed in Table 3.

=
( )cs

a
a cs

3
1 0 =

cs
S
S

cs

max
min 0

=

E
cs cs

VRH
0 =

B
cs cs

VRH
0 =

G
cs cs

VRH
0 =

( )cs
B
G cs

VRH
VRH 0

Al +0.0020 (at.%)−1 +0.023 −14.14 GPa
at . %

−3.37 −6.46 +0.037 (at.%)−1

B +0.0003 +0.036 −16.66 +0.12 −8.16 +0.071
Cu +0.0009 +0.022 −13.37 −2.46 −6.21 +0.040
Mn 0.0000 −0.001 −0.47 −0.08 −0.22 +0.001
Si +0.0017 +0.023 −10.75 −1.22 −5.09 +0.037
C +0.0010 −0.005 −14.06 −0.90 −6.76 +0.053
N +0.0004 −0.004 −15.42 −0.81 −7.43 +0.059

Fig. 3. Derivatives of the hcp Fe Cij with respect to solute concentration. The calculations are performed using × ×4 4 3 supercells containing either one sub-
stitutional or one interstitial solute, corresponding to a solute concentration of 1.04 at.%. The Cij derivatives consist of three contributions: two strain contributions
due to the changes in a1 (blue) and a3 (red), and one contribution from the local change in chemical bonding around the solute (yellow). When the derivative
contributions have the same sign the bars are stacked on each other. When necessary, the bars are shifted vertically so that the total positive contributions and the
total negative contributions overlap to display the partial cancellation of the different terms. The total derivative values given by the sum of all three contributions
are indicated by the arrows. In the cases of Al, B, and C, we also compute the Cij derivatives directly (gray) by applying strains to supercells that contain a solute and
have fully relaxed lattice parameters. The direct calculations closely match the sum of the strain and chemical contributions for all three of these solutes.
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appropriate solute derivatives for these quantities are listed in Table 4.

3.3. Implications for the to transformation

The driving force for martensitic transformations is the free energy
difference between the parent and product phases, which contains a
strain energy contribution [4,47,48,87,88] arising from the lattice
parameter mismatch between the phases. The strain is accommodated
by plastic deformation in the to transformation [3], and the asso-
ciated strain energy increases with the density of dislocations generated
by the transformation [87,89]. The dislocation density in martensite
depends on several factors including alloy chemistry and temperature
[90–93], but correlates well with the volumetric strain associated with
the transformation from austenite to martensite in Fe-C and Fe-Ni alloys
[92]. We therefore estimate the effect of solutes on the volumetric

strain eV between the and phases using the solute dependence of the
lattice parameters ak for hcp and bct Fe. The solute dependence of these
quantities for hcp Fe is given in Table 3, and for bct Fe we use the values
we computed in Ref. [53]. The volumetric strain is [48,82,88]

=e
V V

V
,V

bct
m

hcp
m

hcp
m (19)

where

=V a a N3
4

,hcp
m

1,hcp
2

3,hcp A (20)

=V a a N1
2

.bct
m

1,bct
2

3,bct A (21)

Fig. 5 shows the change in eV versus solute concentration cs. The solute-
free value of eV is positive, so an increase in eV aids in stabilizing the
phase against transformation to the phase by increasing the strain
energy associated with the transformation. Our DFT calculations show
that N, Mn, and C have the largest stabilizing effect, whereas Si and Al
will promote the transformation to the phase. Our DFT-computed
lattice parameter derivatives for Mn in bct Fe [52,53] are 2 to 3 times
larger than experimentally measured values [81,82] which may reduce
the slope of eV by up to a factor of 5, but the increase in strain energy
due to Mn should still have a stabilizing effect on the phase especially
in high-Mn steels.

4. Summary and discussion

We present DFT calculations of solute-induced changes in the lattice
parameters ak and single-crystal Cij of non-magnetic hcp Fe due to dilute
concentrations of Al, B, C, Cu, Mn, Si, C, and N solutes. We treat Al, Cu,
Mn, and Si as substitutional solutes. Our formation energy calculations
show that B is most energetically stable as a substitutional solute,
whereas C and N are most energetically stable as octahedral interstitial
solutes in hcp Fe. We compute strain misfit tensors that determine the
solute dependence of the ak, and we compute the strain and chemical

Fig. 4. Voigt-Reuss-Hill average polycrystalline shear modulus GVRH and
Young’s modulus EVRH vs. solute concentration. All of the solutes reduce both
moduli. Mn produces the smallest changes in the moduli, whereas B has the
largest effect. For a given solute concentration, the change in EVRH is larger than
the change in GVRH for each solute (see Table 4 for the values of the deriva-
tives).

Fig. 5. Change in volumetric strain eV between hcp Fe and bct Fe versus solute
concentration cs. In the absence of solutes, eV is positive. An increase in eV with
cs therefore aids in stabilizing the phase against transformation to the phase
since it will increase the strain energy between the phases. N, Mn, and C pro-
vide the largest stabilizing effect, whereas the decrease in eV due to Al and Si
should promote the transformation of the phase to the phase.
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contributions to the derivatives of the single-crystal elastic constants Cij
with respect to solute concentration. Our direct calculations of the
derivatives of the ak and Cij show that the more computationally effi-
cient strain misfit and chemical contribution calculations provide con-
sistent solute derivative values. These results confirm that the approach
we developed for bcc [52] and bct [53] Fe applies equally well to hcp
Fe. We find that Mn produces a much smaller effect on the lattice
parameters and Cij of hcp Fe than the other solutes. Our derivatives of
the lattice parameters with respect to solute concentration are strictly
valid in the dilute limit, but the close agreement between our Mn values
and values computed from literature data for Mn concentrations be-
tween 15 and 40 at.% suggest that our data can be used to model the
lattice parameters of -martensite in multi-phase medium- to high-Mn
structural steels. This result also suggests that Mn-Mn interactions are
weak in hcp Fe and that our computed Cij derivatives with respect to Mn
concentration can be used to estimate the elastic properties of the
-martensite phase in steels with large concentrations of Mn. Further

studies could investigate this idea using computational supercells with
larger Mn concentrations than we considered, for example special
quasi-random structures to model concentrated random Fe-Mn alloys.
Our computed solute-dependent lattice parameters and Cij can also be
used as inputs for microstructure-based models of multiphase steels
containing the -martensite phase, allowing the study of alloy compo-
sition on elastic and plastic response [46,54].

We use our computed ak and Cij derivatives to estimate solute effects
on the polycrystalline elastic moduli and strain energies associated with
martensitic transformations. We compute the solute dependence of the
polycrystalline Young’s and shear moduli of hcp Fe within the Voigt-
Reuss-Hill approximation. We find that Mn has a weak effect on the
polycrystalline moduli and B has the strongest effect. Additionally, we
show that C, Mn, and N solutes should increase the volumetric strain
difference associated with the to phase transformation in steels.
Accordingly, these solutes should help to stabilize the phase against
transformation to by increasing the strain energy difference between
the two phases. Conversely, Al and Si solutes lower the strain energy
which promotes the transformation to the phase. Our strain data can
be combined with data on chemical and interfacial contributions to the
total transformation free energies to model martensitic transformations
in multiphase steels containing -martensite.
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Appendix A. Polycrystalline elastic moduli

The bulk modulus B, shear modulus G, and Young’s modulus E of an isotropic polycrystalline sample comprised of grains with hexagonal
symmetry can be estimated from the single-crystal elastic stiffness coefficients Cij using the Voigt, Reuss, or Voigt-Reuss-Hill averaging procedures
[45,94,95]. The Voigt and Reuss averages present upper and lower bounds on the polycrystalline moduli, respectively, and the Voigt-Reuss-Hill
moduli are the arithmetic means of the Voigt and Reuss values. The Voigt (V) averages of the moduli are
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where the auxiliary modulus = +C C C C C( ) 22
11 12 33 13

2 [94]. The Voigt-Reuss-Hill (VRH) values for the moduli are
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Pugh’s ratio B G/VRH VRH is a measure of ductility [96,97], with values greater than 1.75 indicating ductile behavior and lower values indicating
brittle behavior.

The derivatives of the single-crystal Cij with respect to solute concentration determine the derivatives of the polycrystalline elastic moduli. The
derivatives of B G,V V, and EV with respect to solute concentration are
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where the derivative of M is
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The derivatives of B G,R R, and ER with respect to solute concentration are
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where the derivative of C2 is
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The derivatives of BVRH and GVRH are averages of the V and R derivatives. The derivatives of EVRH are given by expressions similar to the V and R
expressions, with the V or R moduli replaced by the VRH moduli. Table 4 gives the DFT-computed values of the VRH polycrystalline moduli
derivatives.
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[65] Y. Li, L. Vocădlo, J.P. Brodholt, The elastic properties of hcp-Fe alloys under the
conditions of the Earth’s inner core, Earth Planet. Sci. Lett. 493 (2018) 118–127.

[66] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.

[67] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

[68] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994)
17953–17979.

[69] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-
wave method, Phys. Rev. B 59 (1999) 1758–1775.

[70] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration
in metals, Phys. Rev. B 40 (1989) 3616–3621.

[71] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-
zone integrations, Phys. Rev. B 49 (1994) 16223–16233.

[72] D.R. Trinkle, Lattice and elastic constants of titanium-niobium monoborides con-
taining aluminum and vanadium, Scr. Mater. 56 (2007) 273–276.

[73] H. Kim, D.R. Trinkle, Mechanical properties and phase stability of monoborides
using density functional theory calculations, Phys. Rev. Mater. 1 (2017) 013601.

[74] R.A. Johnson, Internal relaxation in the HCP lattice, Modell. Simul. Mat. Sci. Eng. 1
(1993) 717–722.

[75] F. Jona, P.M. Marcus, Hexagonal and tetragonal states of magnesium by first
principles, Phys. Rev. B 66 (2002) 094104.

[76] B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids,
Math. Comput. 51 (1988) 699–706.

[77] J. Jung, M. Fricke, G. Hampel, J. Hesse, Fe57 Mössbauer effect studies on the
magnetism of iron-rich bcc, fcc, and hcp phases of Fe Mnc c100 , Hyperfine Interact.
72 (1992) 375–388.

[78] T. Hinomura, S. Nasu, Y. Tomota, Fe57 Mössbauer study of -FeMn and -FeMn
alloys, J. Japan. Inst. Met. 62 (1998) 635–641.

[79] H.H. Wu, P. Wisesa, D.R. Trinkle, Oxygen diffusion in hcp metals from first prin-
ciples, Phys. Rev. B 94 (2016) 014307.

[80] R. Agarwal, D.R. Trinkle, Light-element diffusion in Mg using first-principles cal-
culations: anisotropy and elastodiffusion, Phys. Rev. B 94 (2016) 054106.

[81] W.C. Leslie, Iron and its dilue substitutional solid solutions, Metal. Trans. 3 (1972)
5–26.

[82] P. Marinelli, A. Baruj, A.F. Guillermet, M. Sade, Lattice parameters of metastable
structures in quenched Fe-Mn alloys. Part I: Experimental techniques, bcc and fcc
phases, Z. Metallkd. 91 (2000) 957–962.

[83] P. Marinelli, A. Baruj, A.F. Guillermet, M. Sade, Lattice parameters of metastable
structures in quenched Fe-Mn alloys. Part II: hcp phase, Z. Metallkd. 92 (2001)
489–493.

[84] T. Garnier, V.R. Manga, P. Bellon, D.R. Trinkle, Diffusion of Si impurities in Ni
under stress: a first-principles study, Phys. Rev. B 90 (2014) 024306.

[85] J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and
Matrices, Oxford University Press, Oxford, 1985.

[86] F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in
various crystal systems, Phys. Rev. B 90 (2014) 224104.

[87] T. Kunieda, M. Nakai, Y. Murata, T. Koyama, M. Morinaga, Estimation of the system
free energy of martensite phase in an Fe-Cr-C ternary alloy, ISIJ Int. 45 (2005)
1909–1914.

[88] S.-J. Lee, J. Han, C.-Y. Lee, I.-J. Park, Y.-K. Lee, Elastic strain energy induced by
epsilon martensitic transformation and its contribution to the stacking-fault energy
of austenite in Fe-15Mn-xC alloys, J. Alloys Comp. 617 (2014) 588–596.

[89] Y. Murata, I. Nakaya, M. Morinaga, Assessment of strain energy by measuring
dislocation density in copper and aluminium prepared by ECAP and ARB, Mater.
Trans. 49 (2008) 20–23.

[90] M. Kehoe, P.M. Kelly, The role of carbon in the strength of ferrous martensite, Scr.
Metall. 4 (1970) 473–476.

M.R. Fellinger, et al. Computational Materials Science 164 (2019) 116–126

125

http://refhub.elsevier.com/S0927-0256(19)30191-0/h0110
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0110
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0110
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0110
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0115
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0115
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0120
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0120
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0125
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0125
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0130
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0130
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0130
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0135
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0135
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0135
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0140
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0140
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0145
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0145
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0155
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0155
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0155
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0160
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0160
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0165
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0165
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0165
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0170
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0170
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0175
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0175
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0175
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0180
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0180
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0180
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0185
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0185
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0190
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0190
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0190
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0190
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0190
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0195
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0195
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0200
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0200
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0205
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0205
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0210
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0210
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0215
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0215
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0215
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0220
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0220
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0220
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0225
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0225
http://refhub.elsevier.com/S0927-0256(19)30191-0/h9000
http://refhub.elsevier.com/S0927-0256(19)30191-0/h9000
http://refhub.elsevier.com/S0927-0256(19)30191-0/h9000
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0235
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0235
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0240
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0240
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0240
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0240
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0245
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0245
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0250
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0250
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0250
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0255
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0255
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0255
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0260
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0260
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0260
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0265
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0265
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0265
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0270
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0270
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0270
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0275
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0275
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0275
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0275
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0280
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0280
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0285
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0285
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0285
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0290
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0290
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0295
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0295
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0295
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0300
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0300
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0300
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0305
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0305
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0310
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0310
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0310
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0315
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0315
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0320
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0320
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0325
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0325
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0330
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0330
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0335
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0335
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0340
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0340
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0345
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0345
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0350
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0350
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0355
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0355
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0360
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0360
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0365
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0365
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0370
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0370
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0375
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0375
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0380
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0380
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0385
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0385
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0385
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0390
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0390
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0395
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0395
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0400
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0400
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0405
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0405
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0410
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0410
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0410
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0415
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0415
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0415
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0420
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0420
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0425
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0425
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0430
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0430
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0435
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0435
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0435
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0440
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0440
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0440
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0445
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0445
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0445
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0450
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0450


[91] L.-Å. Nörstrom, On the yield strength of quenched low-carbon lath martensite,
Scand. J. Metall. 5 (1976) 159–165.

[92] S. Morito, J. Nishikawa, T. Maki, Dislocation density within lath martensite in Fe-C
and Fe-Ni alloys, ISIJ Int. 43 (2003) 1475–1477.

[93] S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, S. Ogata, Comparison of the
dislocation density in martensitic steels evaluated by some X-ray diffraction
methods, ISIJ Int. 50 (2010) 875–882.

[94] R. Meister, L. Peselnick, Variational method of determining effective moduli of
polycrystals with tetragonal symmetry, J. Appl. Phys. 37 (1966) 4121–4125.

[95] J.P. Watt, L. Peselnick, Clarification of the Hashin-Shtrikman bounds on the ef-
fective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal
symmetries, J. Appl. Phys. 51 (1980) 1525–1531.

[96] S.F. Pugh, Relations between the elastic moduli and the plastic properties of
polycrystalline pure metals, Philos. Mag. 45 (1954) 823–843.

[97] G. Wang, S. Shönecker, S. Hertzman, Q.-M. Hu, B. Johansson, S. Kwon, L. Vitos, Ab
initio prediction of the mechanical properties of alloys: the case of Ni/Mn doped
ferromagnetic Fe, Phys. Rev. B 91 (2015) 224203.

M.R. Fellinger, et al. Computational Materials Science 164 (2019) 116–126

126

http://refhub.elsevier.com/S0927-0256(19)30191-0/h0455
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0455
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0460
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0460
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0465
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0465
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0465
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0470
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0470
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0475
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0475
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0475
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0480
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0480
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0485
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0485
http://refhub.elsevier.com/S0927-0256(19)30191-0/h0485

	Impact of solutes on the lattice parameters and elastic stiffness coefficients of hcp Fe from first-principles calculations
	Introduction
	Computational methods
	DFT calculation details
	Solute formation energy calculations
	Effect of solutes on lattice parameters and elastic stiffness coefficients
	Derivative of ak with respect to cs
	Derivatives of the Cij with respect to cs


	Computational results
	Properties of ideal hcp Fe
	Effects of solutes on the hcp Fe ak and Cij
	Implications for the ε to α′ transformation

	Summary and discussion
	Data availability
	mk:H1_14
	Acknowledgements
	Polycrystalline elastic moduli
	References




