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A variation principle for mass transport in solids is derived that recasts transport coefficients as minima
of local thermodynamic average quantities. The result is independent of diffusion mechanisms and applies
to amorphous and crystalline systems. This unifies different computational approaches for diffusion and
provides a framework for the creation of new approximation methods with error estimation. It gives a
different physical interpretation of the Green function. Finally, the variational principle quantifies the
accuracy of competing approaches for a nontrivial diffusion problem.
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Mass transport in solids is the fundamental kinetic
process controlling both the evolution of materials towards
equilibrium and a variety of material properties [1].
Diffusion of atoms dictates everything from the stability
of amorphous materials at finite temperature, design of
nanoscaled semiconductor devices, processing of structural
metals, including steels and superalloys, and performance
of batteries and fuel cells to the degradation of materials
due to corrosion or even irradiation. Since Einstein [2],
diffusion has been understood as mesoscale motion arising
from many individual atomic displacements, with signifi-
cant effort over the last century to experimentally measure
and model theoretically [3,4]. In the last 40 years, compu-
tation has played an increasingly important role, with
different competing approximation methods developing,
combined with increasingly accurate methods to compute
transition state energies for atomic processes in transport
[5–7]. However, while we have increasing accuracy in
predicting atomic scale mechanisms, we lack a clear
methodology to compare accuracy of theoretical models
that derive mesoscale transport coefficients.
The modern macroscale description of mass transport

comes from Onsager’s work on nonequilibrium thermo-
dynamics [8], where atomic fluxes J are linearly propor-
tional to small driving forces. A general driving force is
the gradient of chemical potential of species α. Then, the
Onsager transport coefficients are second-rank tensors
LðαβÞ that relate steady-state fluxes in species α, where

Jα ¼ −
X
β

LðαβÞ∇μβ ð1Þ

are steady-state fluxes in response to perturbatively
small driving forces in chemical species ∇μβ. These
transport coefficients can also be derived from a thermo-
dynamic extremal principle [9,10] for maximum entropy
production, making the Onsager matrix symmetric and
positive semidefinite.

A brief, albeit incomplete, list of methods to compute
transport coefficients from atomic mechanisms includes
stochastic methods like kinetic Monte Carlo calculations
[11–15], master-equation methods like the self-consistent
mean-field method [16,17] and kinetic mean-field approx-
imations [18–20], path probability methods for irreversible
thermodynamics [21–23], Green function methods [24–27],
and Ritz variational methods [28–30]. The different
approaches all have different computational and theoretical
complexity and rely on different approximations, which may
or may not be controlled. However, the relationships between
different approximations is not always clear, and it is difficult
to determine which of two different calculations is more
accurate, short of comparison to experimental results. Inwhat
follows, we derive a general expression for themass transport
coefficients in a solid system and then cast this nonlocal form
into an equivalent minimization problem over thermody-
namic averages of local quantities: a variational principle for
mass transport, with a simple physical interpretation. We
show that different computational approaches can be derived
and compared with this principle, while also providing a
framework for the development of new types of approxima-
tions for diffusion. We conclude with a quantitative com-
parison for a random alloy on a square lattice.
Consider a system with chemical species [31] α ¼

A;B;…, with discrete microstates f χg and transitions
between states. For each state χ and species α, Nα

χ of that
species are at positions fxα

χi∶i ¼ 1;…; Nα
χg. Note that the

xα
χi are themselves functions of the state χ. If each state has

an energy E χ, then in the grand canonical ensemble, the
equilibrium probability of occupying a given microstate for
chemical potentials μα at temperature T is

P0
χ ≔ P0

χðT; μA;…Þ ¼ exp

�
1

kBT

�
Φ0 þ

X
α

μαNα
χ − E χ

��
;

ð2Þ
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whereΦ0 is a normalization constant—the grand potential—
such that

P
χP

0
χ ¼ 1. If the chemical potentials were

spatially inhomogeneous, then the term corresponding to
the sum over chemistry would be

P
α

P
i μ

αðxα
χiÞ. We

assume that our system can achieve equilibrium through a
Markovian process, with transition rates Wð χ → χ0Þ ≥ 0;
then, by detailed balance, P0

χWðχ → χ0Þ ¼ P0
χ0Wðχ0 → χÞ.

If all nonzero rates conserve chemical species, then the rates
Wð χ → χ0Þ are independent of the chemical potentials and
can only depend on the initial and final states and temper-
ature. The master equation for the evolution of a time-
dependent probability P χðtÞ is

dP χðtÞ
dt

¼
X
χ0
P χ0 ðtÞW χ0 χ ; ð3Þ

where we introduce the shorthand matrix form

W χ0 χ ¼
8<
:

Wð χ0 → χÞ ∶ χ ≠ χ0

−
P
χ0
Wð χ → χ0Þ ∶ χ ¼ χ0 : ð4Þ

We identify steady-state solutions of Eq. (3)—which may
not be equilibrium solutions—as distributions where the
right-hand side is zero for every χ; we are interested in
steady-state solutions that maintain infinitesimal gradients in
chemical potentials, for which we will compute fluxes.
What follows is a generalization of results derived

previously for a lattice gas model [27]; details are available
in the Supplemental Material [32]. Consider a steady-state
probability distribution Pss

χ ≔ Pss
χ ðT; μA;…;∇μA;…Þ in

the presence of infinitesimally small chemical potential
gradient vectors ∇μα. This steady-state probability distri-
bution can have time-independent fluxes Jα corresponding
to mass transport. For any (nonzero rate) transition χ → χ0,
we define the mass transport vector for each species α
as δxα

χ χ0 ≔
P

i x
α
χ0i − xα

χi. This is the net change in
positions for all atoms of species α, as Nα

χ ¼ Nα
χ0 when

Wð χ → χ0Þ ≠ 0. Then, the flux is

Jα ¼ V−1
0

X
χ χ0

Pss
χW χ χ0δxα

χ χ0 ð5Þ

for total system volume V0. We make the ansatz that
the steady-state probability distribution for infinitesimal
gradients

Pss
χ ¼P0

χ

�
1þδΦ0

kBT
þ 1

kBT

X
α

∇μα ·
�
ηαχþ

XNα
χ

i¼1

xα
χi

��
ð6Þ

up to first order in ∇μα, where δΦ0 is a change in the
normalization relative to the equilibrium distribution, and
introducing the “relaxation vectors” ηαχ that are to be

determined for each state χ. These vectors are a generali-
zation of the rate-dependent relaxation in solute-vacancy
exchange [33]. If we substitute Eq. (6) into Eq. (3), set
dPss

χ =dt ¼ 0, apply detailed balance, divide out by P0
χ, and

require that it hold for arbitrary ∇μα, we findX
χ0
Wð χ → χ0Þδxα

χ χ0 ¼ −
X
χ0
Wð χ → χ0Þðηαχ0 − ηαχÞ: ð7Þ

We define the left-hand side as the velocity vector
bα

χ ≔
P

χ0 W χ χ0δxα
χ χ0 , so that Eq. (7) becomes

bα
χ ¼ −

X
χ0
W χ χ0ηαχ0 ð8Þ

for the steady-state ansatz solution to be time invariant.
Then, the transport coefficients LðαβÞ can be found by
substituting the steady-state solution into Eq. (5), while
explicitly symmetrizing the summation (rewriting as
1
2

P
χ χ0 þ

P
χ0 χ), which gives

LðαβÞ ¼ 1

kBTV0

�
1

2

X
χ0
W χ χ0δxα

χ χ0 ⊗ δxβ
χ χ0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

uncorrelated

− bα
χ ⊗ ηβχ|fflfflfflfflffl{zfflfflfflfflffl}
correlated

�
χ

;

ð9Þ

where the two terms are the “uncorrelated” and “correlated”
contributions to diffusivity [3,34], and the average is the
shorthand for

P
χP

0
χ.

While Eq. (9) has the form of a simple thermal average, the
primary complication is the solutionofEq. (8),which requires
the pseudoinversion of the singular rate matrixW χ χ0 over the
entire state space; this is the Green function G χ χ0 ≔ Wþ

χ χ0 .
While the rate matrix is local—as there are only a finite
number of final states χ0 to transition from any state χ—the
Green function is known to be nonlocal and difficult to
compute in general. However, the governing equation for
the relaxation vectors ηαχ can be recast instead in a variational
form by taking advantage of an invariance in Eq. (9).
First, the separation of Eq. (9) into correlated and

uncorrelated terms is arbitrary [34,35]. We introduce
changes to the positions of atoms in a state while leaving
the rate matrix unchanged: let yαχ be the sum of all
displacements of atoms of species α in state χ. We can,
without loss of generality [36], consider only cases whereP

χy
α
χ ¼ 0. Then, the yαχ change the displacement, veloc-

ity, and relaxation vectors

fδxα
χ χ0 ¼ δxα

χ χ0 þ yαχ0 − yαχ ; b̃α
χ ¼ bα

χ þ
X
χ0
W χ χ0yαχ0 ;

η
∼α
χ ¼ −

X
χ0
G χ χ0 b̃

α
χ0 ¼ ηαχ −

X
χ0 χ00

G χ χ0W χ0 χ00yαχ00 ¼ ηαχ − yαχ ;

PHYSICAL REVIEW LETTERS 121, 235901 (2018)

235901-2



as G is the pseudoinverse of W, and yαχ is orthogonal to the right null space of W. Then, the Onsager coefficients are

kBTV0L̃αβ ¼
�
1

2

X
χ0
W χ χ0 ðδxα

χ χ0 þ yαχ0 − yαχÞ⊗ ðδxβ
χ χ0 þ yβχ0 − yβχÞ−

�
bα
χ þ

X
χ0
W χ χ0yαχ0

�
⊗ ðηβχ − yβχÞ

�
χ

¼
�
1

2

X
χ0
W χ χ0δxα

χ χ0 ⊗ δxβ
χ χ0

�
χ

þ1

2

X
χ χ0

P0
χW χ χ0 ðyαχ0 − yαχÞ⊗ ðyβχ0 − yβχÞþ1

2

X
χ χ0

P0
χW χ χ0δxα

χ χ0 ⊗ ðyβχ0 − yβχÞ

þ1

2

X
χ χ0

P0
χW χ χ0 ðyαχ0 − yαχÞ⊗ δxβ

χ χ0 − hbα
χ ⊗ ηβχiχ þ

X
χ

P0
χbα

χ ⊗ yβχ −
X
χ χ0

P0
χW χ χ0yαχ0 ⊗ ηβχ þ

X
χ χ0

P0
χW χ χ0yαχ0 ⊗ yβχ

¼ kBTV0LðαβÞ−
X
χ χ0

P0
χW χ χ0yαχ ⊗ yβχ0 − hbα

χ ⊗ yβχiχ − hyαχ ⊗ bβ
χiχ þhbα

χ ⊗ yβχiχ þhyαχ ⊗bβ
χiχ

þ
X
χ χ0

P0
χW χ χ0yαχ0 ⊗ yβχ ¼ kBTV0LðαβÞ:

This requires detailed balance P0
χW χ χ0 ¼ P0

χ0W χ0 χ and
the sum rule

P
χ0W χ χ0 ¼ 0. Hence, the transport coeffi-

cients are invariant under arbitrary displacements, while the
uncorrelated and correlated terms themselves change.
We can exploit this invariance by noting that, for α ¼ β,

the uncorrelated contribution is positive semidefinite and
the correlated contribution is negative semidefinite, as
W χ χ0 and G χ χ0 are negative semidefinite matrices. Thus,
the maximum value of the correlated contribution is zero,
which corresponds with the minimal value of the uncorre-
lated contribution, and so the equation for the transport
coefficients can be rewritten as

LðααÞ ¼ 1

2kBTV0

inf
yαχ

�X
χ0
W χ χ0

fδxα
χ χ0 ⊗ fδxα

χ χ0

�
χ

; ð10Þ

which is a variational principle for mass transport, involv-
ing only thermodynamic averages of local rate matrix.
Here, the infimum of the tensor corresponds to the
tensor with the smallest trace [37]. The values of yαχ that
minimize Eq. (10) are found by making the generalized

force from the gradient of lα ≔ kBTV0TrL
ðααÞ
uncorr ¼

1
2
hP χ0 W χ χ0 ðfδxα

χ χ0 Þ2i χ ,

fαχ ≔−
∂lα

∂yαχ ¼ −
1

2

∂
∂yαχ

X
χ0 χ00

P0
χ0W χ0 χ00 ðδxα

χ0 χ00 þ yαχ00 − yαχ0 Þ2

¼ −2P0
χ

X
χ0
W χ χ0 ðδxα

χ χ0 þ yαχ0 − yαχÞ ¼ −2P0
χb̃

α
χ

ð11Þ

equal to zero; this is satisfied when yαχ ¼ ηαχ . Moreover, the
arguments yαχ that minimize lα can then be used to compute
the off-diagonal contributions,

LðαβÞ ¼ 1

2kBTV0

�X
χ0
W χ χ0fδxα

χ χ0 ⊗ fδxβ
χ χ0

�
χ

				yαχ¼arginflα

yβχ¼arginflβ

: ð12Þ

Hence, while the α ≠ β terms are not variational, they are
determined by the solution of the diagonal variational
problem. Equation (10) is similar to the Varadhan-Spohn
variational form [38], which Arita et al. note is a powerful,
albeit abstract, result that is difficult to apply in practice,
involving “cylinder” functions [39]; it is simpler than the
alternate Ritz variational form, as there is no normalization
of an eigenvector required [28–30].
This variational principle for mass transport has multiple

consequences. First, it unifies multiple approaches for the
computation of mass transport coefficients, including
kinetic Monte Carlo calculations, Green function methods,
and self-consistent mean-field theory. Moreover, it provides
a direct way to compare the accuracy of different methods:
outside of the convergence of stochastic sampling errors,
once a mass transport method is recast in a variational form,
the minimal value of the diagonal transport coefficients is
necessarily closer to the true value. It also gives a simple
physical explanation for the correlation contributions in
mass transport: the ηαχ values are displacements that map a
correlated random walk into an equivalent uncorrelated
randomwalk with identical transport coefficients. Finally, it
provides a framework for the construction of new algo-
rithms for the computation of mass transport that requires
the minimization of a thermal average; as it is based on
minimization, different approximations for yαχ can be
simultaneously introduced, while the process of minimi-
zation finds the optimal solution.
In the case of a linear expansion for the relaxation

vectors, the variational principle for mass transport pro-
vides a simple general expression for diffusivity. Let fϕα

χ;ng
be a set of basis vectors so that we expand yαχ ¼

P
nϕ

α
χ;nθ

α
n

with coefficients θαn. Section S4 of the Supplemental
Material [32] shows the most general solution of the

PHYSICAL REVIEW LETTERS 121, 235901 (2018)

235901-3



linearized basis approximation method (LBAM); here, we
include the solution for the case where the basis functions
are chemistry and direction independent: ϕα

χ;ni ¼ êiϕχ;n

for a Cartesian orthonormal basis ê1, ê2, ê3. Then, the
coefficients that minimize Eq. (10) can be found by solvingP

mW̄nmθ
α
mi ¼ b̄α

n · êi, where

W̄nm ≔
�X

χ0
W χ χ0ϕχ;nϕ

α
χ0;m

�
χ

; b̄α
n ≔ hϕχ;nbα

χi χ : ð13Þ

We can take the pseudoinverse of Ḡ ≔ ðW̄Þþ, and then the
transport coefficients are [cf. Eq. (S26)]

LðαβÞ
LBAM ¼ 1

2kBTV0

�X
χ0
W χ χ0δxα

χ χ0 ⊗ δxβ
χ χ0

�
χ

þ 1

kBTV0

X
nm

hϕχ;nbα
χi χ ⊗ Ḡnmhϕχ;mb

β
χi χ ; ð14Þ

where the diagonal transport coefficients LðααÞ
LBAM are guar-

anteed to be an upper bound on the true coefficients,
achieving equality when the basis fϕχ;ng spans ηαχ .
We can now express existing computational approaches

as attempts to solve the variational problem. For kinetic
Monte Carlo calculations [11–15], each trajectory repre-
sents a single sample in the average, while the increasing
length of a trajectory attempts to converge the relaxation
vectors corresponding to that single starting state. In
Sec. S3 of the Supplemental Material [32], the equivalence
of kinetic Monte Carlo (KMC) calculations to the variation
method is shown; moreover, the use of a finite length
trajectory is variational. Assuming perfect sampling of
initial states and with perfect sampling of trajectories of a
finite length, the transport coefficients will be greater
than the true transport coefficients. If one uses accelerated
KMC methods [40–44], superbasins—a finite collection of
states with fast internal transitions but slow escapes—are
effectively collapsed onto a single position, which is an
approximation to the relaxation vector ηαχ. For vacancy-
mediated diffusion, the dilute Green function [26,27] and
matrix methodology [24,25] work in a restricted state space
f χg, where only one solute and vacancy are present, and
then effectively construct a full basis in that state space.
Finally, self-consistent [16,17] and kinetic mean-field
[18–20] methods work with a cluster expansion of chem-
istry- and direction-independent basis functions fϕχ;ng,
which are products of site occupancies for different
chemistries. It should be noted that these latter two methods
derive their solution for the parameters θn using a ladder of
n-body correlation functions on which they invoke “closure
approximations” for higher order correlation functions; in a
variational framework, such closure approximations
become unnecessary. Finally, when methods are framed
in variational terms, we can quantitatively compare accu-
racy by identifying which method gives the smallest

diagonal elements LðααÞ and also estimate remaining error
through the average residual bias hðb̃α

χÞ2=ð−W χ χÞi χ in
Eq. (S29) or its ratio with hðbα

χÞ2=ð−W χ χÞi χ .
In addition to providing a common frame for existing

computational methods for mass transport, we now have a
new framework to develop and test new approximations,
including those that are more appropriate for amorphous
systems that lack crystalline order but still possess well-
defined microstates. A simple example is the basis function
choice ϕα

χ ¼ bα
χ ; in Sec. S5 of the Supplemental Material

[32], a closed-form approximation for transport coefficients
is provided in Eq. (S32). This approximation involves
inverting a matrix that has the same dimensionality as the
number of independent chemical species; however, it only
captures local correlations. We can also take the dilute
Green function methodology for vacancy-mediated trans-
port into finite solute concentrations by using the basis
functions ϕχ;βx that are equal to the occupancy (0 or 1) by
chemistry β of a site at a vector x relative to a vacancy in
state χ. This approximation exactly reproduces the dilute
solute limit by being equivalent to an infinite range two-
body-only version of the Green function.
For a quantitative comparison of these new approxima-

tions, we consider a random binary alloy on a square lattice
with a single vacancy. In this model, there is no binding
energy between any species, and the jump rate for the
vacancy only depends on the chemistry of the species it is
exchanging: either νA (solvent exchange) or νB (solute
exchange). We take νA ¼ 1 and consider three cases:
νB ¼ 1 (tracer), νB ¼ 4 (fast diffuser), and νB ¼ 0 (frozen
solute). This system has nontrivial behavior, including a
percolation limit [45,46] for νB ¼ 0, where the diffusivity
of the solvent is zero for cB < 1. To compute the transport
coefficients, we use the following. (1) Kinetic Monte Carlo
calculations on a 64 × 64 periodic grid, 256 samples of
trajectories are generated for 4096 vacancy jumps each; the
transport coefficients are computed 32 separate times to get
a mean and stochastic error estimate. (2) A two-body Green
function (GF) approximation (cf. Sec. S6 [32]) has the
analytic solution [cf. Eq. (S40) [32] ],

LðAAÞ
GF ¼ 1cva20

�
cAνA −

cAcBν2A
νA þ νB þ 2f−1

1−f ðcAνA þ cBνBÞ

�

LðBBÞ
GF ¼ 1cva20

�
cBνB −

cAcBν2B
νA þ νB þ 2f−1

1−f ðcAνA þ cBνBÞ

�
;

ð15Þ

where f ¼ ðπ − 1Þ−1 ≈ 0.467 is the dilute tracer correlation
coefficient for a square lattice. (3) A bias basis approxi-
mation has the same transport coefficients as Eq. (15) with
the approximation f ¼ 1–2=ðzþ 1Þ ¼ 0.6. (4) A self-
consistent mean-field approach is used with clusters of
all orders within two jumps: �x̂, �ŷ, �x̂� ŷ, �2x̂, and
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�2ŷ. Finally, for νB ¼ 0, we use a full Green function
solution for vacancy diffusivity with 256 configurations of
a 256 × 256 periodic cell; and compute a residual bias
correction (RBC) for the two-body Green function results.
Figure 1 shows the different accuracy for this binary

system, where the lowest diffusivity is the most accurate
[47,48]. The Green function approach captures the dilute A
and B limits for the tracer and fast diffuser examples and is
the most accurate of the three approaches. The largest
difference is seen for the percolation case νB ¼ 0, where
both the Green function and self-consistent mean-field
(SCMF) methods are good approximations for cB ≲ 0.2,
but begin to break down as we approach the percolation
limit. In this case, solutes are creating islands, where a
vacancy is trapped and unable to diffuse over long
distances; inside such an island, the relaxation vectors
should map all “trapped” states onto the same position,
producing no contribution to the diffusivity. We also see the
direct simulations produce lower, more accurate, diffusiv-
ity. The size of these islands gets smaller as cB increases,
and only the self-consistent mean-field method—and only
at large concentrations of solute—is able to reproduce the
behavior seen by kinetic Monte Carlo calculations. This
suggests the need to go beyond the two-body basis for the
Green function approach, combining local multisite basis
functions with long-range basis functions or perhaps new

approximation methods all together. One such approach is
the RBC, where following a linear basis approximation
method the residual bias vectors serve as basis vectors for a
correction to the diffusivity; in the case of νB ¼ 0, we
derive an analytic expression [cf. Sec. S7, Eq. (S47) [32] ]
that has a similar error to the SCMF result.
With a variational formulation of transport coefficients,

we can develop new approximate methods for modeling
diffusion in solids, including amorphous materials. If linear
approximations are used, then basis functions provide a
projection of the state space into a subspace, while the
variational principle provides a lower bound on transport
coefficients. The selection of basis functions can be guided
by physical insight—such as diffusing quasiparticles—and
systematic improvement is always possible. It is also
possible to construct nonlinear approximations to the
relaxation vectors yαχ , which might require fewer param-
eters to describe; still, a variational principle permits
relative comparisons of different methods and a lower
bound on the result. While the fundamental insight for the
variational formulation came from the invariance in Eq. (9),
it can be derived as a thermodynamic extremum principle
where the positions of atoms are “free” variables, connect-
ing to Onsager’s original work.
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