Impact of solutes on the lattice parameters and elastic stiffness coefficients of hcp Fe from first-principles calculations

Michael R. Fellingera,b,*, Louis G. Hector Jrb, Dallas R. Trinkleb

a Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
b General Motors Global R&D Center, 30470 Harley Earl Blvd, Warren, MI 48092, USA

ARTICLE INFO

Keywords:
Lattice parameters
Elastic constants
Solutes
Iron
Steel
hcp
Martensite
Ab initio
DFT

ABSTRACT

The hexagonal close-packed (hcp) \(\varepsilon\)-martensite phase in steels nucleates from the \(\gamma\)-austenite parent phase and can undergo further transformation to the \(\alpha'\)-martensite phase or exist as a metastable phase depending on temperature, mechanical loading, and alloy chemistry. The solute-dependent lattice parameters and elastic stiffness coefficients \(C_{ij}\) of hcp Fe influence the mechanical properties of steels containing the \(\varepsilon\)-martensite phase, as well as the martensitic transformations between the phases. We use density functional theory to calculate the lattice parameters and \(C_{ij}\) of single-crystal hcp Fe as functions of solute concentration in the dilute limit for the substitutional solutes Al, B, Cu, Mn, and Si, and the octahedral interstitial solutes C and N. Our computationally efficient methodology separates the solute dependence of the lattice parameters and elasticity of Fe alloys into two contributions: the solute dependence of the \(C_{ij}\) components of the lattice stiffness tensors and the strain energy associated with martensitic transformations. The data can also serve as inputs to microstructure-based models of multiphase steels containing the \(\varepsilon\)-martensite phase.

1. Introduction

Steel alloys find widespread application as structural materials since they are cost-effective and their mechanical properties can be tuned through processing and alloying more easily than many other structural materials\[1,2\]. The most common phases found in structural steels for automotive applications include \(\sigma\)-ferrite (body-centered cubic), \(\gamma\)-austenite (face-centered cubic), and \(\alpha'\)-martensite (body-centered tetragonal). The hexagonal close-packed (hcp) phase of pure Fe (space group \(P\overline{6}_3/mmc\)) is non-magnetic and is stable at high pressure, but can also form from the \(\gamma\)-austenite phase during a stress-assisted\[3–8\] or strain-induced\[9\] martensitic transformation. The transformed austenite can be stabilized by solute additions\[10–12\], leading to the hcp \(\varepsilon\)-martensite phase found in some steels, or it can further transform to the \(\alpha'\)-martensite phase\[4–7,13–17\] depending on temperature, mechanical deformation, and alloy chemistry. The \(\varepsilon\)-martensite phase occurs at the intersection of shear bands in some transformation-induced plasticity (TRIP) steels\[8,18–21\], can form after plastic deformation in twinning-induced plasticity (TWIP) steels\[20,22\] and stainless steels\[7,9,13,16,17,23–27\], and is also found in FeMn-based shape memory alloys\[28–38\]. Experimental measurements on a variety of steels\[3,13,16,23,24,39–44\] show that the \(\alpha'\)-martensite phase can nucleate at the intersection of two \(\varepsilon\)-martensite laths or inside a single \(\varepsilon\)-martensite lath during the \(\gamma \rightarrow \varepsilon \rightarrow \alpha'\) martensitic transformation. Iron alloys with the \(\varepsilon\)-martensite phase typically contain Al, C, Co, Cr, Mn, Ni, and Si solutes\[8,19,21,22,27,37\].

In addition to governing mechanical properties of multiphase steels\[45,46\], the lattice parameters and elastic stiffness coefficients \(C_{ij}\) of \(\gamma\)-austenite, \(\varepsilon\)-martensite, and \(\alpha'\)-martensite influence the martensitic transformations between these phases\[16,17,20,47,48\]. The lattice parameters and \(C_{ij}\) determine the strain energy contributions to the free energy difference between the parent and product phases\[4,47,48\], govern the structure and energy of the interfacial regions between phases\[4,16,48\], and control the separation between Shockley partial dislocations that can glide to produce the martensitic transformations\[3–5,15–17,48\]. The lattice parameters and \(C_{ij}\) of Fe phases depend on the concentration of solutes in the alloy\[49–53\], so understanding the influence of solutes on the structural and elastic properties of hcp Fe is crucial for modelling the formation, mechanical stability, and subsequent transformation of the \(\varepsilon\)-martensite phase. Solute-dependent lattice parameters and \(C_{ij}\) of hcp Fe also serve to increase the accuracy and predictive capabilities of microstructure-based simulations of the elastic\[54\] and plastic\[46,55\] response of Fe-based shape memory alloys and multiphase steels containing \(\varepsilon\)-martensite.

Most experimental and theoretical studies of solute effects on the lattice parameters and elasticity of Fe alloys have focused on either...
polycrystalline steels [49], or single crystals with the body-centered cubic (ferrite) [50,52,56] or body-centered tetragonal (α′-martensite) structure [53,56–58]. While first-principles methods have been used to compute the structural and elastic properties of pure single-crystal hcp Fe [59–62] and the effect of Si and C solutes on the elasticity of hcp Fe [63–65], these previous studies largely focused on behavior at pressures relevant to the Earth’s core (~ 360 GPa), rather than the low pressures that occur in most structural steel applications where the elastic stiffness is generally much lower [63]. We therefore present a detailed density functional theory (DFT) study of the effects of Al, B, C, Cu, Mn, N, and Si solutes commonly found in high-strength steels for automotive applications on the single-crystal lattice parameters and Cij of hcp Fe at zero pressure. Our computationally efficient approach determines the changes in the Cij due to the separate effects of solute-induced strain and changes in chemical bonding around the solutes [52,53]. We also provide estimates of the effect of these solutes on the polycrystalline elastic moduli of hcp Fe, and discuss how solutes influence the strain energy associated with the ε to α′ transformation.

The rest of this paper is organized as follows. Section 2 gives the details of our DFT calculations and discusses our models for the solute dependence of the lattice parameters and Cij of hcp Fe in the dilute limit. Section 3 presents our results for the variation of the lattice parameters and Cij with solute concentration. Here we also compute the effect of solutes on the volumetric strain difference between the ε and α′ phases in steels, and discuss the implications for the martensitic transformation between these phases. Section 4 summarizes the results and provides further discussion. The Appendix gives expressions for the elastic moduli of polycrystalline hcp Fe and their derivatives with respect to solute concentration in terms of the derivatives of the single-crystal Cij.

2. Computational methods

We use DFT to compute the lattice parameters and Cij of non-magnetic hcp Fe as functions of the concentration of Al, B, C, Cu, Mn, Si, and N solutes in the dilute limit. We treat Al, Cu, Mn, and Si as substitutional solutes. We compute the formation energies of B, C, and N in substitutional and six different interstitial sites, and show that B is most energetically stable as a substitutional solute whereas C and N are most energetically stable as octahedral interstitial solutes.

2.1. DFT calculation details

All of our DFT calculations are performed using the plane-wave basis code VASP [66]. We use the PBE generalized gradient approximation (GGA) functional [67] for the electron exchange-correlation energy, and projector augmented wave (PAW) potentials [68] generated by Kresse and Joubert [69] to model the nuclei and core electrons of Fe and all of the solutes. The PAW potentials for Fe, Al, Cu, Mn, Si, C, and N have the respective electronic configurations [Ar]3d64s1, [Ne]3s23p1, [He]2s22p1, [Ar]3d104s1, [Ar]3d44s1, [Ne]3s23p2, [He]2s22p2, and [He]2s22p1. The calculations require a plane-wave energy cutoff of 550 eV to converge the energies to less than 1 meV/atom. The energy tolerance for the electronic self-consistency loop is 10−6 eV, and we use a conjugate gradient method to relax the atoms until all of the atomic forces are less than 5 meV/A. The k-point meshes for our 4 × 4 × 3 supercell calculations are based on a 32 × 32 × 20 unit cell k-point mesh. We use order-one Methfessel-Paxton smearing [70] to ensure accurate forces and stresses for relaxing supercells and calculating the Cij. For our chosen k-point density, we use a smearing energy width of 0.2 eV to ensure close agreement between the smeared electronic density of states near the Fermi energy and the electronic density of states computed using the linear tetrahedron method with Blöchl corrections [71]. We use standard stress-strain calculations to compute the Cij [52,53,72,73], taking care to fully relax the atomic positions after applying strain [61,74,75]. We use standard finite difference formulas to compute derivatives of the Cij with respect to lattice parameters or solute concentrations [52,53,76].

We model hcp Fe as non-magnetic since we find that the ferromagnetic state and several different antiferromagnetic magnetic states relax to the non-magnetic state at zero pressure. The ground state magnetic structure of hcp Fe at zero pressure was also found to be non-magnetic in previous DFT-GGA calculations [60,61]. Experiments show that the hcp ε-martensite phase in steels is not magnetizable [2], and Mössbauer effect studies on Fe-Mn alloys [77,78] suggest that the hcp phase is paramagnetic but that the magnetic moments on the Fe atoms are all less than 0.1 μB [78]. Furthermore, ab initio simulations of hcp Fe-Mn random alloys within the disordered local moment (DLM) approximation for paramagnetism [51] show that the local Fe magnetic moments are zero at the equilibrium volume. All of the solutes in our study are also non-magnetic, with the possible exception of Mn. We performed test calculations where we initialized the Mn magnetic moment to a non-zero value, and we found that after relaxation the moment goes to approximately zero. The DLM study on hcp Fe-Mn alloys in Ref. [51] also found that the local magnetic moments on the Mn atoms are zero at the equilibrium volume. We therefore treated Mn as non-magnetic in all subsequent calculations.

2.2. Solute formation energy calculations

We perform formation energy calculations to show that C and N are most stable as octahedral interstitial solutes, whereas B is most stable as a substitutional solute. The formation energy of substitutional solutes is computed as

\[E_{\text{sub}}^f = E[(N - 1)\text{Fe}, s_{\text{sub}}] - (N - 1)E[\text{NFe}]/N - E[s], \]

(1)

where \(E[(N - 1)\text{Fe}, s_{\text{sub}}] \) is the total energy of a supercell containing \((N - 1) \) Fe atoms and a solute s at a substitutional site, \(E[\text{NFe}] \) is the total energy of a supercell containing N Fe atoms, and \(E[s] \) is the energy of a single solute atom. The formation energy of interstitial solutes is computed as

\[E_{\text{int}}^f = E[\text{NFe}, s_{\text{int}}] - E[\text{NFe}] - E[s], \]

(2)

where \(E[\text{NFe}, s_{\text{int}}] \) is the total energy of a supercell containing N Fe atoms and a solute s at an interstitial site. Since we are interested in the relative stability of the solutes at different sites within the crystal, we compute the interstitial formation energies \(E_{\text{int}}^f \) relative to the substitutional formation energy for each solute

\[E_{\text{int}}^f = E_{\text{int}}^f - E_{\text{sub}}^f. \]

(3)

Table 1 compares \(E_{\text{int}}^f \) for interstitial solutes at octahedral, tetrahedral, hexahedral, face-centered, basal crowdion, and non-basal crowdion interstitial sites [79,80].

2.3. Effect of solutes on lattice parameters and elastic stiffness coefficients

We compute the solute dependence of the hcp Fe lattice parameters \(a_0 \) and elastic stiffness coefficients \(C_{ij} \) in the dilute limit using a DFT-

<table>
<thead>
<tr>
<th>Solute</th>
<th>(a_0) (Å)</th>
<th>(E_{\text{oct}}) (eV/Å)</th>
<th>(E_{\text{tet}}) (eV/Å)</th>
<th>(E_{\text{hex}}) (eV/Å)</th>
<th>(E_{\text{bas}}) (eV/Å)</th>
<th>(E_{\text{non-bas}}) (eV/Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>+0.79 eV</td>
<td>+2.62 eV</td>
<td>+2.52 eV</td>
<td>+1.88 eV</td>
<td>+1.88 eV</td>
<td>+1.88 eV</td>
</tr>
<tr>
<td>C</td>
<td>−2.07 eV</td>
<td>−0.30 eV</td>
<td>−0.44 eV</td>
<td>−0.58 eV</td>
<td>−0.44 eV</td>
<td>−0.54 eV</td>
</tr>
<tr>
<td>N</td>
<td>−3.14 eV</td>
<td>−2.06 eV</td>
<td>−1.95 eV</td>
<td>−1.71 eV</td>
<td>−1.95 eV</td>
<td>−1.47 eV</td>
</tr>
</tbody>
</table>
based methodology that closely follows the approach we developed for cubic [52] and tetragonal crystal structures [53]. Here we summarize the approach and refer the reader to Refs. [52,53] for more details. In this study, \(a_1 = a_2 \) are equal to the hcp lattice parameter conventionally denoted as \(a \), and \(a_0 \) is equal to the hcp lattice parameter conventionally denoted as \(c \) (i.e., we are using three-index Bravais notation, rather than four-index Miller-Bravais notation). In the dilute limit the \(a_k \) and \(C_{ij} \) depend linearly on solute concentration \(c_i \) [49,52,53,81–83],

\[
a_k((c_i)) = a_k^0 + \sum_i \frac{\partial a_k}{\partial c_i} \cdot c_i + ..., \tag{4}
\]

\[
C_{ij}((c_i)) = C_{ij}^0 + \sum_i \left(\frac{\partial C_{ij}}{\partial c_i} \right)_{str} \cdot c_i + ..., \tag{5}
\]

where \(a_k^0 \) and \(C_{ij}^0 \) are the lattice parameters and elastic stiffness coefficients of pure hcp Fe, respectively, and the sums are over solute species. The total derivative of \(C_{ij} \) in Eq. (5) is

\[
\left(\frac{\partial C_{ij}}{\partial c_i} \right)_{tot} = \left(\frac{\partial C_{ij}}{\partial c_i} \right)_{strain} + \left(\frac{\partial C_{ij}}{\partial c_i} \right)_{chem}, \tag{6}
\]

where the first term on the right is the solute-induced strain contribution and the second term is the contribution from changes in chemical bonding around the solute atom. In the following sections we give expressions for the derivatives in Eqs. (4) and (6), where we denote the DFT approximation of a physical quantity \(X \) as \(\tilde{X} \).

2.3.1. Derivative of \(a_k \) with respect to \(c_i \)

The solute dependence of the lattice parameter \(a_k \) arises from the stress the solutes induce in the host crystal and the strain the crystal undergoes to relieve this stress. We compute the derivative of \(a_k \) with respect to \(c_i \) in the dilute limit from the solute strain misfit tensor \(\varepsilon_{ij}^s \), which is the derivative of solute-induced strain \(\varepsilon_{ij}^s \) with respect to solute concentration \(c_i \) [52,53],

\[
\varepsilon_{ij}^s = \frac{\partial \varepsilon_{ij}}{\partial c_i} \bigg|_{c_i=0}. \tag{7}
\]

The substitutional and octahedral interstitial solutes considered in this study do not induce shear strain in hcp Fe, so the off-diagonal elements of \(\varepsilon_{ij}^s \) are zero. The derivative of the lattice parameter \(a_k \) with respect to \(c_i \) is determined from

\[
\varepsilon_{ij} = \frac{1}{a_k^0} \frac{\partial a_k}{\partial c_i} \bigg|_{c_i=0} \delta_{ij} (\delta_{ij} + \delta_{ik} + \delta_{ki}), \tag{8}
\]

where \(\delta_{ij} \) is the Kronecker delta.

We compute \(\varepsilon_{ij} \) from the elastic compliance tensor of the host crystal \(S_{ijkl} \), and the solute’s elastic dipole tensor \(\bar{P}_{ij}^{str} \) [84] which captures the stress the solute induces in the host crystal. The DFT approximation to \(\bar{P}_{ij}^{str} \) is [53,84]

\[
\bar{P}_{ij}^{str} = -N \Omega_e c_i (a_{ij}^{(N,\Omega_e)}), \tag{9}
\]

where \(N \) is the number of lattice sites in the computational supercell, \(\Omega_e \) is the volume per atom in the ideal solute-free hcp crystal, and \(a_{ij}^{(N,\Omega_e)} \) is the DFT-computed stress that a single solute induces in the supercell with fixed ideal hcp lattice vectors after relaxing the atomic positions. To ensure that only solute-induced stress is included in Eq. (9), any small residual stress computed for the solute-free supercell should be subtracted from \(a_{ij}^{(N,\Omega_e)} \) which is computed for the supercell containing a solute. The DFT approximation to \(\varepsilon_{ij} \) is then [52,53]

\[
\varepsilon_{ij} = -\frac{1}{\Omega_0} \sum_{a_k} S_{ijkl} P_{ij}^{str}, \tag{10}
\]

or explicitly for substitutional and octahedral interstitial solutes,

\[
\varepsilon_{ij} = -\frac{1}{\Omega_0} \sum_{a_k} S_{ijkl} P_{ij}^{str}, \tag{11}
\]

For selected solutes we verify the accuracy of Eq. (11) by fully relaxing the atomic and lattice degrees of freedom of the supercells and directly computing the diagonal components of the solute strain misfit tensors as

\[
\varepsilon_{ij} = N (a_k^0 - a_k^s)/a_k^0, \tag{12}
\]

where \(a_k^s \) is a fully relaxed lattice parameter of the supercell containing a solute. Computing \(\varepsilon_{ij} \) using Eq. (11) is more computationally efficient, however, since it requires relaxing only the atomic degree of freedom, whereas Eq. (12) requires relaxing both the atomic and lattice degrees of freedom.

2.3.2. Derivatives of the \(C_{ij} \) with respect to \(c_i \)

The solute dependence of the elastic stiffness coefficients \(C_{ij} \) arises from the solute-induced strain that changes the lattice parameters of the host crystal, and the local changes in chemical bonding around the solutes [52,53] (see Eq. (6)). For both substitutional and interstitial solutes, there are strain contributions from changes in the \(a_k \) basal lattice parameter and from changes in the \(a_0 \) lattice parameter (i.e., along the c-axis). The strain contribution is the sum of the derivatives of the solute-free hcp Fe \(C_{ij}^{0} \) with respect to the lattice parameters times the derivatives of the lattice parameters with respect to solute concentration,

\[
\left(\frac{\partial C_{ij}}{\partial c_i} \right)_{strain} = \sum_{a=1}^3 \left(\begin{array}{c} \frac{\partial C_{ij}}{\partial a_k} \\ \frac{\partial C_{ij}}{\partial a_0} \\ \frac{\partial C_{ij}}{\partial a_0} \\ \frac{\partial C_{ij}}{\partial a_0} \end{array} \right) \bigg|_{a=0} \left(\begin{array}{c} \frac{\partial a_k}{\partial c_i} \\ \frac{\partial a_0}{\partial c_i} \end{array} \right)_{a=0}, \tag{13}
\]

\[
\left(\frac{\partial C_{ij}}{\partial c_i} \right)_{chem} = \sum_{a=1}^3 \left(\begin{array}{c} \frac{\partial C_{ij}}{\partial a_k} \\ \frac{\partial C_{ij}}{\partial a_0} \\ \frac{\partial C_{ij}}{\partial a_0} \\ \frac{\partial C_{ij}}{\partial a_0} \end{array} \right) \bigg|_{a=0} \left(\begin{array}{c} \frac{\partial a_k}{\partial c_i} \\ \frac{\partial a_0}{\partial c_i} \end{array} \right)_{a=0}, \tag{14}
\]

where the DFT approximations for \(\partial C_{ij}^{0}/\partial a_k \) and \(\partial C_{ij}^{0}/\partial a_0 \) in Eq. (14) are computed using a four-point central finite difference method (see Refs. [52,53] for details). In practice we do not compute the two separate derivatives of the \(C_{ij}^{0} \) in the sum in Eq. (14) (i.e., for \(k = 1 \) and 2), but rather compute the \(C_{ij}^{0} \) derivatives after applying uniform basal strain to the lattice. The chemical contribution in Eq. (6) is

\[
\left(\frac{\partial C_{ij}}{\partial c_i} \right)_{chem} = \frac{\partial C_{ij}^{0}}{\partial c_i} \bigg|_{c_i=0}, \tag{15}
\]

We approximate this derivative using a forward finite difference,

\[
\left(\frac{\partial C_{ij}}{\partial c_i} \right)_{chem} = N [C_{ij}^{0}(\Omega_0) - C_{ij}^{0}(\Omega_0 + c_i)], \tag{16}
\]

where \(C_{ij}^{0}(\Omega_0) \) is an elastic stiffness coefficient of an hcp Fe crystal that contains solute \(c_i \) but has the lattice parameters of ideal solute-free hcp Fe. We compute \(C_{ij}^{0}(\Omega_0) \) by applying strain to supercells that contain a single solute but have the ideal hcp Fe lattice parameters which isolates the chemical contribution to the \(C_{ij} \) derivative. We verify the accuracy of Eq. (6) by directly calculating the total derivative of \(C_{ij} \) for selected solutes using a finite difference approximation similar to Eq. (16),

\[
\left(\frac{\partial C_{ij}}{\partial c_i} \right)_{dir} = N [C_{ij}^{0}(\Omega_0) - C_{ij}^{0}(\Omega_0 + c_i)]. \tag{17}
\]

Eq. (17) differs from Eq. (16) since \(C_{ij}^{0}(\Omega_0) \) is computed by straining supercells that contain a single solute and have fully relaxed lattice parameters. Hence, the directly calculated derivatives contain both the chemical and the strain contributions. The separate calculations of the strain and chemical contributions are more computationally efficient,
Fig. 1. Flowchart for computing the solute dependence of the hcp Fe lattice parameters \(a_0\) and elastic stiffness coefficients \(C_{ij}\). The arrows show how the outputs from a given calculation serve as inputs to other calculations. The green boxes show steps requiring DFT calculations, and the tan boxes show steps that only use DFT results from previous steps to perform calculations.

However, since we compute the \(C_{ij}\) derivatives in the strain contributions in Eq. (14) using two-atom hcp unit cells and the chemical contribution calculations in Eq. (16) require relaxing only atomic degrees of freedom, Fig. 1 outlines our computational approach for computing the solute-induced changes in the lattice parameters and \(C_{ij}\) in hcp Fe. The solute-dependent \(C_{ij}\) can also be used to compute the solute dependence of the polycrystalline bulk modulus \(B\), shear modulus \(G\), and Young’s modulus \(E\) using the Voigt-Reuss-Hill averaging approach discussed in the Appendix.

We also examine the effect of solutes on the elastic anisotropy of hcp Fe under tension. The effective elastic compliance \(S^{\prime}\) along the unit tensile direction \(\mathbf{u}\) is [85]

\[
S^{\prime} = (1 - u_1^2)S_{11} + u_1^2S_{13} + u_1^2(1 - u_1^2)(2S_{13} + S_{44}),
\]

(18)

where the \(S_i\) are single-crystal elastic compliance coefficients written in contracted Voigt notation. Note that the only component of \(\mathbf{u}\) that \(S^{\prime}\) depends on is \(u_1\) which corresponds to the \(a_1\)-axis (i.e., the \(c\)-axis) of the hcp crystal. We quantify the anisotropy under tensile loading as the ratio of the maximum value of \(S^{\prime}\) with respect to \(u_1\) to the minimum value of \(S^{\prime}\). This ratio changes with \(c\), through the solute dependence of the \(C_{ij}\) which determine the \(S_{ij}\).

3. Computational results

Here we present the results of our DFT calculations of the lattice parameters and \(C_{ij}\) of ideal hcp Fe and Fe with solutes. We compute the solute dependence of Voigt-Reuss-Hill (VRH) average polycrystalline elastic moduli using the equations given in the Appendix. We also compute the variation in the volumetric strain difference between hcp and bcc Fe with solute concentration, and discuss how this effects the \(\varepsilon\) to \(\alpha^{*}\) transformation in steels. We compare our results to previous DFT-GGA calculations and available experimental data.

3.1. Properties of ideal hcp Fe

Table 2 lists our computed \(a_0^{(i)}\) and \(C_{ij}^{(i)}\) for pure Fe that enter into the solute-dependent lattice parameter model in Eq. (4) and \(C_{ij}\) model in Eq. (5), as well as the derivatives of the \(C_{ij}^{(i)}\) with respect to \(a_0^{(i)}\) that are inputs for the strain contributions to the solute dependence of the \(C_{ij}\) in Eq. (14). The table also shows that our results generally compare well with previous GGA calculations [60,61], with the \(C_{ij}^{(i)}\) and \(C_{ij}^{(i)}\) values from Ref. [60] showing the largest deviations from our results. We performed extensive tests using different \(k\)-point densities, energy smearing widths, plane-wave cutoff energies, and PAW potentials with different numbers of core electrons, and found deviations of less than 5% from our values in Table 2. These results combined with the good agreement...
between our values and the values from Ref. [61] suggest that the C_{33}^{ij} and C_{ij}^{ij} values from Ref. [60] may be overpredicted. Our computed C_{ij}^{ij} values satisfy the Born stability criteria for hcp crystals [86], which shows that non-magnetic hcp Fe is elastically stable at zero pressure. The table also lists the anisotropy ratio for single-crystal hcp Fe computed using Eq. (18), and the VRH estimates for the polycrystalline Young’s modulus E_{VRH}, bulk modulus B_{VRH}, shear modulus G_{VRH}, and Pugh’s ratio B_{VRH}/G_{VRH} (see the Appendix for more details on the VRH moduli).

3.2. Effects of solutes on the hcp Fe a_i and C_{ij}

Fig. 2 shows the strain misfit tensor components for each solute computed from solute-induced stress, and verifies that the values agree with direct calculations for selected solutes. The strain misfit values for

![Solute strain misfit tensor components ϵ_{ij}^s in hcp Fe. The calculations are performed using $4 \times 4 \times 3$ supercells containing either one substitutional or one interstitial solute, corresponding to a solute concentration of $\sim 1.04 \text{ at.\%}$. The dark bars show values computed from the solute-induced stress using Eq. (11). The light bars show values computed directly using Eq. (12) for Al, B, and C. The ϵ_{ij}^s computed using both methods agree closely for all three of these solutes. The data in the figure is for atomic concentration. For atomic percent, the values must be divided by 100.](image-url)

The calculations are performed using $4 \times 4 \times 3$ supercells containing either one substitutional or one interstitial solute, corresponding to a solute concentration of $\sim 1.04 \text{ at.\%}$. The dark bars show values computed from the solute-induced stress using Eq. (11). The light bars show values computed directly using Eq. (12) for Al, B, and C. The ϵ_{ij}^s computed using both methods agree closely for all three of these solutes. The data in the figure is for atomic concentration. For atomic percent, the values must be divided by 100.

Al, Cu, Mn, Si, C, and N are positive which shows that these solutes are oversized in the hcp lattice, whereas the negative values for B show that it is undersized. Al has the largest effect among the substitutional solutes, whereas octahedral interstitial C and N have the largest overall effect. Mn has a small effect on the lattice parameters of hcp Fe, and corresponding small strain contributions to the solute derivatives of the C_{ij}. We compute strain misfit tensors for all of the solutes from the stress they induce in the lattice (see Eq. (11)), and we also compute strain misfit tensors directly (see Eq. (12)) for Al, B, and C. The close agreement between the two methods shows that the computationally efficient induced-stress method provides reliable strain misfit values. The strain misfit tensor components determine the derivatives of the a_i in Table 3, computed using Eqs. (8) and (11). The ab initio DLM study of hcp Fe-Mn random alloys in Ref. [51] computed the variation of the hcp lattice parameters a_i for Mn concentrations from 15 to 40 at.\%, and Ref. [83] provides experimental measurements of a_i for Mn concentrations from ~ 12 to 29 at.\%. The variation of the DLM and experimental data is approximately linear over these full concentration ranges. We estimate that the slopes of a_i and a_j are $\sim +0.45 \text{ mÅ/at.\%}$ and $\sim +0.71 \text{ mÅ/at.\%}$ for DLM, and the experimental slopes reported in Ref. [83] are $+0.8886 \text{ mÅ/at.\%}$ and $+1.23 \text{ mÅ/at.\%}$. Our computed slopes for a_i and a_j of $+0.31 \text{ mÅ/at.\%}$ and $+0.42 \text{ mÅ/at.\%}$ for Mn (see Table 3) agree well with the DLM values even though our calculations were performed at much smaller Mn concentration of 1.04 at.\%. This result suggests that Mn-Mn interactions are weak in hcp Fe, and that our linear model for the dependence of the lattice parameters on solute concentrations in Eq. (4) holds over a large concentration range for Mn. We also note that our calculations, the DLM calculations, and the experimental measurements show that Mn produces no change in a_i/a_j from dilute concentrations (see Table 4) up to a concentration of 40 at.\% (see Ref. [51]). Our computed a_i slopes for Mn and the DLM slopes are smaller than the experimental values, but all three sets of values indicate that Mn produces a small isotropic expansion of the hcp Fe lattice in contrast to the other solutes in this study.

Table 3

<table>
<thead>
<tr>
<th>Solute</th>
<th>$\delta a_i/\delta x$</th>
<th>$\delta C_{ij}/\delta x$</th>
<th>$\delta C_{33}^{ij}/\delta x$</th>
<th>$\delta C_{11}^{ij}/\delta x$</th>
<th>$\delta C_{12}^{ij}/\delta x$</th>
<th>$\delta C_{13}^{ij}/\delta x$</th>
<th>$\delta C_{23}^{ij}/\delta x$</th>
<th>$\delta C_{44}^{ij}/\delta x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>+1.75 mÅ/at.%</td>
<td>+7.75</td>
<td>-12.19</td>
<td>-8.83</td>
<td>+4.95</td>
<td>-1.80</td>
<td>-5.84</td>
<td>-8.57</td>
</tr>
<tr>
<td>B</td>
<td>-3.15</td>
<td>-4.18</td>
<td>-11.19</td>
<td>-5.12</td>
<td>+8.95</td>
<td>+2.67</td>
<td>-8.02</td>
<td>-10.07</td>
</tr>
<tr>
<td>Cu</td>
<td>+1.09</td>
<td>+3.98</td>
<td>-10.69</td>
<td>-7.90</td>
<td>+4.37</td>
<td>-0.42</td>
<td>-6.04</td>
<td>-7.53</td>
</tr>
<tr>
<td>Mn</td>
<td>+0.31</td>
<td>+0.42</td>
<td>-0.94</td>
<td>-0.31</td>
<td>+0.64</td>
<td>+0.04</td>
<td>+0.29</td>
<td>-0.79</td>
</tr>
<tr>
<td>Si</td>
<td>+0.26</td>
<td>+4.48</td>
<td>-8.22</td>
<td>-4.33</td>
<td>+5.52</td>
<td>-0.33</td>
<td>-4.75</td>
<td>-6.87</td>
</tr>
<tr>
<td>C</td>
<td>+5.89</td>
<td>+11.87</td>
<td>-10.94</td>
<td>-13.17</td>
<td>+4.59</td>
<td>+4.43</td>
<td>-5.12</td>
<td>-7.77</td>
</tr>
<tr>
<td>N</td>
<td>+6.22</td>
<td>+10.74</td>
<td>-11.76</td>
<td>-13.89</td>
<td>+4.92</td>
<td>+5.05</td>
<td>-5.86</td>
<td>-8.34</td>
</tr>
</tbody>
</table>
close agreement of the lattice parameter derivatives over such a large concentration range suggests that Mn-Mn interactions are weak and that the chemical contributions to the \(C_{ij} \) derivatives should also be fairly insensitive over a large range of Mn concentrations. Interstitial C and N produce the overall largest change in \(C_{33} \). The total derivative values in Fig. 3 are listed in Table 3, and enter Eq. (5) to give the solute dependence of the \(C_{ij} \). The derivatives of the single-crystal \(C_{ij} \) determine the derivatives of the anisotropy ratio \(S_{\text{max}}/S_{\text{min}} \) and VRH polycrystalline moduli listed in Table 4. None of the solutes has a strong impact on the elastic anisotropy \(S_{\text{max}}/S_{\text{min}} \) or the Pugh’s ratio \(B/G \) of hcp Fe.

Fig. 4 shows the variation of the polycrystalline shear modulus \(G_{\text{VRH}} \) and Young’s modulus \(E_{\text{VRH}} \) with solute concentration. Manganese has a small effect on \(E_{\text{VRH}} \) and \(G_{\text{VRH}} \), whereas B has the largest effect.

In summary, Eq. (4) gives the hcp Fe lattice parameters \(a_k \) as functions of solute concentration and Eq. (5) gives the single-crystal \(C_{ij} \) as functions of solute concentration. The derivatives with respect to solute concentration that enter these models are given in Table 3. Similar linear models can be used to compute the dilute-limit solute dependence of quantities derived from the single-crystal \(a_k \) and \(C_{ij} \), including \(a_k/a_t, S_{\text{max}}/S_{\text{min}}, E_{\text{VRH}}, B_{\text{VRH}}, G_{\text{VRH}}, \) and \(B_{\text{VRH}}/G_{\text{VRH}}. \) The

<table>
<thead>
<tr>
<th>Solute</th>
<th>(\Delta a_1/a_t)</th>
<th>(\Delta a_3/a_t)</th>
<th>(\Delta S_{\text{max}}/S_{\text{min}})</th>
<th>(\Delta B_{\text{VRH}}/B_{\text{VRH}})</th>
<th>(\Delta G_{\text{VRH}}/G_{\text{VRH}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>+0.0020 (at.%)^{-1}</td>
<td>+0.023</td>
<td>-14.14 GPa</td>
<td>-3.37</td>
<td>-6.46</td>
</tr>
<tr>
<td>B</td>
<td>+0.0003</td>
<td>+0.036</td>
<td>-16.56</td>
<td>+0.12</td>
<td>-8.16</td>
</tr>
<tr>
<td>Cu</td>
<td>+0.0009</td>
<td>+0.022</td>
<td>-13.37</td>
<td>-2.46</td>
<td>-6.21</td>
</tr>
<tr>
<td>Mn</td>
<td>+0.0000</td>
<td>-0.001</td>
<td>-0.47</td>
<td>-0.08</td>
<td>-0.22</td>
</tr>
<tr>
<td>Si</td>
<td>+0.0017</td>
<td>+0.023</td>
<td>-10.75</td>
<td>-1.22</td>
<td>-5.09</td>
</tr>
<tr>
<td>C</td>
<td>+0.0010</td>
<td>-0.005</td>
<td>-14.96</td>
<td>-0.90</td>
<td>-6.76</td>
</tr>
<tr>
<td>N</td>
<td>+0.0004</td>
<td>-0.004</td>
<td>-15.42</td>
<td>-0.81</td>
<td>-7.43</td>
</tr>
</tbody>
</table>

Fig. 3. Derivatives of the hcp Fe \(C_{ij} \) with respect to solute concentration. The calculations are performed using \(4 \times 4 \times 3 \) supercells containing either one substitutional or one interstitial solute, corresponding to a solute concentration of \(\approx 1.04 \) at.%. The \(C_{ij} \) derivatives consist of three contributions: two strain contributions due to the changes in \(a_1 \) (blue) and \(a_3 \) (red), and one contribution from the local change in chemical bonding around the solute (yellow). When the derivative contributions have the same sign the bars are stacked on each other. When necessary, the bars are shifted vertically so that the total positive contributions and the total negative contributions overlap to display the partial cancellation of the different terms. The total derivative values given by the sum of all three contributions are indicated by the arrows. In the cases of Al, B, and C, we also compute the \(C_{ij} \) derivatives directly (gray) by applying strains to supercells that contain a solute and have fully relaxed lattice parameters. The direct calculations closely match the sum of the strain and chemical contributions for all three of these solutes.
appropriate solute derivatives for these quantities are listed in Table 4.

3.3. Implications for the \(\varepsilon \) to \(\alpha' \) transformation

The driving force for martensitic transformations is the free energy difference between the parent and product phases, which contains a strain energy contribution \[4,47,87,88\] arising from the lattice parameter mismatch between the phases. The strain is accommodated by plastic deformation in the \(\varepsilon \) to \(\alpha' \) transformation \[3\], and the associated strain energy increases with the density of dislocations generated by the transformation \[87,89\]. The dislocation density in martensite depends on several factors including alloy chemistry and temperature \[90–93\], but correlates well with the volumetric strain associated with the transformation from austenite to martensite in Fe-C and Fe-Ni alloys \[92\]. We therefore estimate the effect of solutes on the volumetric strain \(\varepsilon_V \) between the \(\alpha' \) and \(\varepsilon \) phases using the solute dependence of the lattice parameters \(a_{\text{hcp}} \) for hcp Fe. The solute dependence of these quantities for hcp Fe is given in Table 3, and for bct Fe we use the values we computed in Ref. \[53\]. The volumetric strain is \[48,82,88\]

\[
e_V = \frac{V_{\text{hcp}}^m - V_{\text{hcp}}^m}{V_{\text{hcp}}^m},
\]

where

\[
V_{\text{hcp}}^m = \frac{\sqrt{3}}{4} a_{\text{hcp}}^2 a_{\text{hcp}} N_{\alpha},
\]

\[
V_{\text{bct}}^m = \frac{1}{2} a_{\text{bct}}^2 a_{\text{bct}} N_{\varepsilon}.
\]

Fig. 5 shows the change in volumetric strain \(\varepsilon_V \) versus solute concentration \(c_s \). In the absence of solutes, \(\varepsilon_V \) is positive. An increase in \(\varepsilon_V \) with \(c_s \) therefore aids in stabilizing the \(\varepsilon \) phase against transformation to the \(\alpha' \) phase since it will increase the strain energy between the phases. N, Mn, and C provide the largest stabilizing effect, whereas the decrease in \(\varepsilon_V \) due to Al and Si should promote the transformation of the \(\varepsilon \) phase to the \(\alpha' \) phase.

Fig. 4 illustrates the change in Voigt-Reuss-Hill average polycrystalline shear modulus \(G_{\text{VRH}} \) and Young’s modulus \(E_{\text{VRH}} \) vs. solute concentration. All of the solutes reduce both moduli. Mn produces the smallest changes in the moduli, whereas B has the largest effect. For a given solute concentration, the change in \(E_{\text{VRH}} \) is larger than the change in \(G_{\text{VRH}} \) for each solute (see Table 4 for the values of the derivatives).

4. Summary and discussion

We present DFT calculations of solute-induced changes in the lattice parameters \(a_{\alpha} \) and single-crystal \(C_{ij} \) of non-magnetic hcp Fe due to dilute concentrations of Al, B, C, Cu, Mn, Si, C, and N solutes. We treat Al, Cu, Mn, and Si as substitutional solutes. Our formation energy calculations show that B is most energetically stable as a substitutional solute, whereas C and N are most energetically stable as octahedral interstitial solutes in hcp Fe. We compute strain misfit tensors that determine the solute dependence of the \(a_{\alpha} \), and we compute the strain and chemical
contributions to the derivatives of the single-crystal elastic constants C_{ij} with respect to solute concentration. Our direct calculations of the derivatives of the a_i and C_{ij} show that the more computationally efficient strain misfit and chemical contribution calculations provide consistent solute derivative values. These results confirm that the approach we developed for bcc [52] and bct [53] Fe applies equally well to hcp Fe. We find that Mn produces a much smaller effect on the lattice parameters and C_{ij} of hcp Fe than the other solutes. Our derivatives of the lattice parameters with respect to solute concentration are strictly valid in the dilute limit, but the close agreement between our Mn values and values computed from literature data for Mn concentrations between 15 and 40 at.% suggest that our data can be used to model the lattice parameters of ε-martensite in multi-phase medium- to high-Mn structural steels. This result also suggests that Mn-Mn interactions are weak in hcp Fe and that our computed C_{ij} derivatives with respect to Mn concentration can be used to estimate the elastic properties of the ε-martensite phase in steels with large concentrations of Mn. Further studies could investigate this idea using computational supercells with larger Mn concentrations than we considered, for example special quasi-random structures to model concentrated random Fe-Mn alloys. Our computed solute-dependent lattice parameters and C_{ij} can also be used as inputs for microstructure-based models of multiphase steels containing the ε-martensite phase, allowing the study of alloy composition on elastic and plastic response [46,54].

We use our computed a_i and C_{ij} derivatives to estimate solute effects on the polycrystalline elastic moduli and strain energies associated with martensitic transformations. We compute the solute dependence of the polycrystalline Young’s and shear moduli of hcp Fe within the Voigt-Reuss-Hill approximation. We find that Mn has a weak effect on the polycrystalline moduli and B has the strongest effect. Additionally, we show that C, Mn, and N solutes should increase the volumetric strain difference associated with the ε to α’ phase transformation in steels. Accordingly, these solutes should help to stabilize the ε phase against transformation to the α’ phase by increasing the strain energy difference between the two phases. Conversely, Al and Si solutes lower the strain energy which promotes the transformation to the α’ phase. Our strain data can be combined with data on chemical and interfacial contributions to the total transformation free energies to model martensitic transformations in multiphase steels containing ε-martensite.

Appendix A. Polycrystalline elastic moduli

The bulk modulus B, shear modulus G, and Young’s modulus E of an isotropic polycrystalline sample comprised of grains with hexagonal symmetry can be estimated from the single-crystal elastic stiffness coefficients C_{ij} using the Voigt, Reuss, or Voigt-Reuss-Hill averaging procedures [45,94,95]. The Voigt and Reuss averages present upper and lower bounds on the polycrystalline moduli, respectively, and the Voigt-Reuss-Hill moduli are the arithmetic means of the Voigt and Reuss values. The Voigt (V) averages of the moduli are

$$B_V = \frac{2C_{11} + C_{13} + 2C_{12} + 4C_{13}}{9},$$

(A.1)

$$G_V = \frac{12C_{44} + 12C_{66} + M}{30},$$

(A.2)

$$E_V = \frac{9B_V G_V}{3B_V + G_V},$$

(A.3)

where $C_{66} = (C_{11} - C_{12})/2$ and the auxiliary modulus $M = C_{11} + 2C_{13} + C_{12} - 4C_{13}$ [94]. The Reuss (R) averages of the moduli are

$$B_R = \frac{C^2}{M},$$

(A.4)

$$G_R = \frac{5}{2} \left[\frac{C_{44} C_{66} C^2}{(C_{44} + C_{66}) C^2 + 3B_V C_{44} C_{66}} \right],$$

(A.5)

$$E_R = \frac{9B_R G_R}{3B_R + G_R},$$

(A.6)

where the auxiliary modulus $C^2 = (C_{11} + C_{12})C_{13} - 2C_{13}^2$ [94]. The Voigt-Reuss-Hill (VRH) values for the moduli are

Data availability

The raw and processed data required to reproduce these findings are available to download from http://hdl.handle.net/11256/982.

CRediT authorship contribution statement

Michael R. Fellinger: Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing - original draft, Writing - review & editing. Louis G. Hector Jr: Conceptualization, Investigation, Resources, Supervision, Project administration, Writing - review & editing. Dallas R. Trinkle: Funding acquisition, Supervision, Writing - review & editing.

Acknowledgements

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number (s) DE-EE0005976. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The research was performed using computational resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. Additional computational resources were provided by the National Energy Research Scientific Computing Center, the General Motors High Performance Computing Center, and the Teras cluster maintained and operated by the Computational Science and Engineering Program at the University of Illinois.
\(B_{\text{VRH}} = \frac{B_V + B_R}{2} \),
\(G_{\text{VRH}} = \frac{G_V + G_R}{2} \),
\(E_{\text{VRH}} = \frac{9G_{\text{VRH}}}{B_{\text{VRH}} + G_{\text{VRH}}} \).

Pugh's ratio \(B_{\text{VRH}}/G_{\text{VRH}} \) is a measure of ductility [96,97], with values greater than \(~1.75\) indicating ductile behavior and lower values indicating brittle behavior.

The derivatives of the single-crystal \(C_i \) with respect to solute concentration determine the derivatives of the polycrystalline elastic moduli. The derivatives of \(B_V \), \(G_V \), and \(E_V \) with respect to solute concentration are
\[
\frac{\partial B_V}{\partial c_i} = \frac{2 B_{ij} C_{ij}}{9} \left[\frac{1}{M} \frac{\partial C_i}{\partial c_i} + 2 \frac{\partial C_{ij}}{\partial c_i} + 4 \frac{\partial C_{ij}}{\partial c_i} \right],
\]
\[
\frac{\partial G_V}{\partial c_i} = \frac{2 G_{ij} C_{ij}}{5} \left[\frac{1}{M} \frac{\partial C_i}{\partial c_i} + 2 \frac{\partial C_{ij}}{\partial c_i} + 4 \frac{\partial C_{ij}}{\partial c_i} \right],
\]
\[
\frac{\partial E_V}{\partial c_i} = (3B_V + G_V)^{-1} \left[9G_{ij} C_{ij} + 27B_V^2 \frac{\partial C_{ij}}{\partial c_i} \right],
\]
where the derivative of \(M \) is
\[
\frac{\partial M}{\partial c_i} = \frac{2 C_{ij}}{9} \left[\frac{1}{M} \frac{\partial C_i}{\partial c_i} + 2 \frac{\partial C_{ij}}{\partial c_i} + 4 \frac{\partial C_{ij}}{\partial c_i} \right].
\]

The derivatives of \(B_R \), \(G_R \), and \(E_R \) with respect to solute concentration are
\[
\frac{\partial B_R}{\partial c_i} = \frac{1}{M} \frac{\partial C_{ij} C_{ij}}{\partial c_i} - \frac{C_{ij}}{M^2} \frac{\partial C_{ij}}{\partial c_i},
\]
\[
\frac{\partial G_R}{\partial c_i} = \frac{C_{ij}}{2} \left(\frac{\partial C_{ij}}{\partial c_i} \right)^2 - 3C_{ij} \frac{\partial G_{ij}}{\partial c_i} \frac{\partial C_{ij}}{\partial c_i} - C_{ij} \frac{\partial G_{ij}}{\partial c_i} \frac{\partial C_{ij}}{\partial c_i} - C_{ij} \frac{\partial G_{ij}}{\partial c_i} \frac{\partial C_{ij}}{\partial c_i} \right] \left[3C_{ij} \frac{\partial C_{ij}}{\partial c_i} B_V + (C_{ij} + \partial C_{ij} \frac{\partial C_{ij}}{\partial c_i}) C_{ij} \right],
\]
\[
\frac{\partial E_R}{\partial c_i} = (3B_R + G_R)^{-1} \left[9G_{ij} \frac{\partial B_R}{\partial c_i} + 27B_R^2 \frac{\partial G_R}{\partial c_i} \right],
\]
where the derivative of \(C_i^2 \) is
\[
\frac{\partial (C_{ij})^2}{\partial c_i} = C_{ij} \left(\frac{\partial C_{ij}}{\partial c_i} \right)^2 + \left(C_{ij} + C_{ij} \frac{\partial C_{ij}}{\partial c_i} \right) \frac{\partial C_{ij}}{\partial c_i} - 4C_{ij} \frac{\partial C_{ij}}{\partial c_i} \frac{\partial C_{ij}}{\partial c_i}.
\]

The derivatives of \(B_{\text{VRH}} \) and \(G_{\text{VRH}} \) are averages of the \(V \) and \(R \) derivatives. The derivatives of \(E_{\text{VRH}} \) are given by expressions similar to the \(V \) and \(R \) expressions, with the \(V \) or \(R \) moduli replaced by the VRH moduli. Table 4 gives the DFT-computed values of the VRH polycrystalline moduli derivatives.

References

17. X.-S. Yang, S. Sun, H.H.R.S.-Q. Shi, T.-Y. Zhang, Shear and shuffling accomplishing polymorphic for \(γ \rightarrow \text{hcp} \rightarrow \text{bcc} \rightarrow α' \) martensitic phase transformation, Acta Mater. 136 (2017) 347–354.
22. K. Yan, D. Bhattacharyya, Q. Lian, S. Kabra, M. Kawasaki, D.G. Cari,

